Recently, despite the great success achieved by the so‐called “magic bullets” in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of “molecular network active compounds,” embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi‐epi‐target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi‐targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC‐101 and CUDC‐907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high‐quality reviews on combination therapy and hybrid molecules. Hence, to update the state‐of‐the‐art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi‐epi‐target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Sirtuins are NAD + -dependent deacylases that play crucial roles in the regulation of cellular metabolism, and as a result, are implicated in several diseases. The mitochondrial sirtuin Sirt4, for a long time considered as mainly a mono-ADP-ribosyltransferase, recently has shown a robust deacylase activity in addition to the already accepted substrate-dependent lipoamidase and deacetylase properties. Through these and likely other enzymatic and non-enzymatic activities, Sirt4 closely controls various metabolic events, and its dysregulation is linked to various aging-related disorders, including type 2 diabetes, cardiac hypertrophy, non-alcoholic fatty liver disease, obesity, and cancer. For its capability to inhibit glutamine catabolism and for the modulation of genome stability in cancer cells in response to different DNA-damaging conditions, Sirt4 is proposed as either a mitochondrial tumor suppressor or a tumor-promoting protein in a context-dependent manner. In addition to what is already known about the roles of Sirt4 in different biological settings, further studies are certainly still needed in order to validate this enzyme as a new potential target for various aging diseases.
Epigenetic modulators Histone deacetylases (HDACs) and Lysine demethylase (LSD1) are validated targets for anticancer therapy. Both HDAC1/2 and LSD1 are found in association with the repressor protein CoREST in a transcriptional co-repressor complex, which is responsible for gene silencing. Combined modulation of both targets results in a synergistic antiproliferative activity. In the present investigation, we report about the design and synthesis of a series of polyamine-based HDACs-LSD1 dual binding inhibitors obtained by coupling Vorinostat and Tranylcypromine. Compound 4 emerged as the most promising of the synthesized series, showing good inhibitory activity towards HDAC1 and LSD1 either in vitro and in cell-based assay (Ki = 42.52 ± 8.94 nM and IC = 3.85 μM, respectively). Furthermore, at 70.0 µM compound 4 induced a more pronounced cytotoxic effect than Vorinostat (68.6% vs 56.6% of dead cells) in MCF7 cancer cell line.
Chemical inhibition of chromatin-mediated signaling involved proteins is an established strategy to drive expression networks and alter disease progression. Protein methyltransferases are among the most studied proteins in epigenetics and, in particular, disruptor of telomeric silencing 1-like (DOT1L) lysine methyltransferase plays a key role in MLL-rearranged acute leukemia Selective inhibition of DOT1L is an established attractive strategy to breakdown aberrant H3K79 methylation and thus overexpression of leukemia genes, and leukemogenesis. Although numerous DOT1L inhibitors have been several structural data published no pronounced computational efforts have been yet reported. In these studies a first tentative of multi-stage and LB/SB combined approach is reported in order to maximize the use of available data. Using co-crystallized ligand/DOT1L complexes, predictive 3-D QSAR and COMBINE models were built through a python implementation of previously reported methodologies. The models, validated by either modeled or experimental external test sets, proved to have good predictive abilities. The application of these models to an internal library led to the selection of two unreported compounds that were found able to inhibit DOT1L at micromolar level. To the best of our knowledge this is the first report of quantitative LB and SB DOT1L inhibitors models and their application to disclose new potential epigenetic modulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.