Background and Purpose-We investigated the contribution of gap junctions to brain damage and delayed neuronal death produced by oxygen-glucose deprivation (OGD). Methods-Histopathology, molecular biology, and electrophysiological and fluorescence cell death assays in slice cultures after OGD and in developing rats after intrauterine hypoxia-ischemia (HI). Results-OGD persistently increased gap junction coupling and strongly activated the apoptosis marker caspase-3 in slice cultures. The gap junction blocker carbenoxolone applied to hippocampal slice cultures before, during, or 60 minutes after OGD markedly reduced delayed neuronal death. Administration of carbenoxolone to ischemic pups immediately after intrauterine HI prevented caspase-3 activation and dramatically reduced long-term neuronal damage. Conclusions-Gap
The functional architecture of the cerebral cortex is based on intrinsic connections that precisely link neurons from distinct cortical laminae as well as layer-specific afferent and efferent projections. Experimental strategies using in vitro assays originally developed by Friedrich Bonhoeffer have suggested that positional cues confined to individual layers regulate the assembly of local cortical circuits and the formation of thalamocortical projections. One of these wiring molecules is ephrinA5, a ligand for Eph receptor tyrosine kinases. EphrinA5 and Eph receptors exhibit highly dynamic expression patterns in distinct regions of the cortex and thalamus during early and late stages of thalamocortical and cortical circuit formation. In vitro assays suggest that ephrinA5 is a multifunctional wiring molecule for different populations of cortical and thalamic axons. Additionally, the expression patterns of ephrinA5 during cortical development are consistent with this molecule regulating, in alternative ways, specific components of thalamic and cortical connectivity. To test this directly, the organization of thalamocortical projections was examined in mice lacking ephrinA5 gene expression. The anatomical studies in ephrinA5 knockout animals revealed a miswiring of limbic thalamic projections and changes in neocortical circuits that were predicted from the expression pattern and the in vitro analysis of ephrinA5 function.
Axon guidance cues of the ephrin ligand family have been hypothesized to regulate the formation of thalamocortical connections, but in vivo evidence for such a role has not been examined directly. To test whether ephrin-mediated repulsive cues participate in sorting the projections originating from distinct thalamic nuclei, we analyzed the organization of somatosensory and anterior cingulate afferents postnatally in mice lacking ephrin-A5 gene expression. Projections from ventrobasal and laterodorsal nuclei to their respective sensory and limbic cortical areas developed normally. However, a portion of limbic thalamic neurons from the laterodorsal nucleus also formed additional projections to somatosensory cortical territories, thus maintaining inappropriate dual projections to multiple cortical regions. These results suggest that ephrin-A5 is not required for the formation of normal cortical projections from the appropriate thalamic nuclei, but rather acts as a guidance cue that restricts limbic thalamic axons from inappropriate neocortical regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.