Biomass generated from agricultural operations in Costa Rica represents an untapped renewable resource for bioenergy generation. This study investigated the effects of two temperatures and three mixture ratios of manures and food wastes on biogas production and microbial community structure. Increasing the amount of fruit and restaurant wastes in the feed mixture significantly enhanced the productivity of the systems (16% increase in the mesophilic systems and 41% in the thermophilic). The methane content of biogas was also favored at higher temperatures. Beta diversity analysis, based on high-throughput sequencing of 16S rRNA gene, showed that microbial communities of the thermophilic digestions were more similar to each other than the mesophilic digestions. Species richness of the thermophilic digestions was significantly greater than the corresponding mesophilic digestions (F = 40.08, p = 0.003). The mesophilic digesters were dominated by Firmicutes and Bacteroidetes while in thermophilic digesters, the phyla Firmicutes and Chloroflexi accounted for up to 90% of all sequences. Methanosarcina represented the key methanogen and was more abundant in thermophilic digestions. These results demonstrate that increasing digestion temperature and adding food wastes can alleviate the negative impact of low C:N ratios on anaerobic digestion.
Central America is one of the most important biodiversity hot spots in the world, and Costa Rican microbial communities from thermal springs are the best characterized in the isthmus. Miravalles is an inactive quaternary stratovolcano, and the Rincón de la Vieja is a unique active volcano, in whose slopes diverse hydrothermal springs, such as Las Lilas, are located. These springs harbor extensive microbial mats, whose diversity has been studied. Based on their importance as primary producers, in this study we focused on cultured cyanobacterial diversity from two geothermal environments of northern Costa Rica. Several cultural, molecular and taxonomic techniques were employed to maximize the results of a polyphasic approach. Sample collection sites were physicochemically described, and strains were isolated and characterized by light and electron microscopy. Phylogenetic analysis was performed using 16S rRNA gene sequences and amplified ribosomal DNA restriction analysis (ARDRA). Fifty‐six phylotypes were isolated and classified into 21 morphotypes and identified in 14 genera, some of them might be new species within these genera. Furthermore, according to phylogenetic analysis, there are three possible new genera in our collection. Miravalles and Las Lilas thermal springs are reservoirs of novel phylogeographic lineages of phototrophic microorganisms. This study is the first report of strains that belong to the genera Gloeocapsa, Stanieria, Microseira, Klisinema and Oculatella isolated from thermal springs and growing at temperatures above 50°C. We also obtained isolates assigned to Synechococcus, Leptolyngbya spp., and Fischerella, which are considered typical strains in these environments.
Introduction. In Costa Rica, bacterial canker of mango has caused economic losses in most of the productive areas since the mid-1980s. The causal agents have been identified only by phenotypic methods such as Erwinia mangifera and E. herbicola. Objective. To confirm, using a molecular and phenotypic approach, the species of the Enterobacteriaceae the cause bacterial canker of mango in Costa Rica. Material and methods. Fruits, branches, and trunks with symptoms were collected in different orchards in the Alajuela province. Bacterial isolation was performed, and pathogenicity was evaluated by inoculating fruits and trunks of the Tommy Atkins variety. The positive isolates for the pathogenic test were re-inoculated, isolated, and identified in order to fulfill Koch’s postulates. The CIBCM-Mg-115 positive isolate that caused symptoms was analyzed by complete biochemical characterization and molecular identification by phylogenetic analyses of 16S rRNA and the atpD, gyrB, infB, and rpoB housekeeping genes. Results. According to the data obtained from the biochemical and molecular analysis, the CIBCM-Mg-115 strain was identified as Erwinia billingiae. Conclusion. E. billingiae corresponds to one of the causal agents of bacterial canker on mango (M. indica) trees in Costa Rica.
Prokaryotic diversity in lakes has been studied for many years mainly focusing on community structure and how the bacterial assemblages are driven by physicochemical conditions such as temperature, oxygen, and nutrients. However, little is known about how the composition and function of the prokaryotic community changes upon lake stratification. To elucidate this, we studied Lake Cote in Costa Rica determining prokaryotic diversity and community structure in conjunction with physicochemistry along vertical gradients during stratification and mixing periods. Of the parameters measured, ammonium, oxygen, and temperature, in that order, were the main determinants driving the variability in the prokaryotic community structure of the lake. Distinct stratification of Lake Cote occurred (March 2018) and the community diversity was compared to a period of complete mixing (March 2019). The microbial community analysis indicated that stratification significantly altered the bacterial composition in the epi-meta- and hypolimnion. During stratification, the Deltaproteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Euryarchaeota were dominant in the hypolimnion yet largely absent in surface layers. Among these taxa, strict or facultative anaerobic bacteria were likely contributing to the lake nitrogen biogeochemical cycling, consistent with measurements of inorganic nitrogen measurements and microbial functional abundance predictions. In general, during both sampling events, a higher abundance of Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Cyanobacteria was found in the oxygenated layers. Lake Cote had a unique bacterial diversity, with 80% of Amplicon Sequence Variant (ASV) recovered similar to unclassified/uncultured strains and exhibits archetypal shallow lake physicochemical but not microbial fluctuations worthy of further investigation. This study provides an example of lake hydrodynamics impacts to microbial community and their function in Central American lakes with implications for other shallow, upland, and oligotrophic lake systems.
Introducción: A nivel mundial se han detectado bacterias con genes de resistencia al antibiótico oxitetraciclina en estiércol de vacas lecheras, sin embargo, es una práctica común utilizar este estiércol como fertilizante. El vermicompostaje puede reducir el problema, pero este tema no ha sido evaluado en Costa Rica. Objetivo: Analizar la presencia de bacterias resistentes a la oxitetraciclina durante el vermicompostaje en una finca lechera costarricense. Métodos: A partir de estiércol fresco, precompostado, lombricomposta, y tés de composta con y sin melaza y tés de composta con y sin melaza, inoculamos caldos suplementados con oxitetraciclina. Extrajimos el ADN de estos cultivos líquidos y secuenciamos en masa el amplicón ribosómico 16S. Resultados: Clasificamos 105 292 secuencias en 58 variantes de secuencia de amplicón de caldos suplementados con oxitetraciclina, la mayoría identificadas como Proteobacteria, Bacteroidetes y Firmicutes. El estiércol fresco tuvo más bacterias resistentes (32), seguido de los “tés” sin y con melaza. El precompostaje y el vermicompostaje disminuyeron la cantidad y variedad de bacterias resistentes. Sin embargo, la preparación de los tés provocó la multiplicación de géneros bacterianos reconocidos por su capacidad de acumular determinantes de resistencia. Conclusión: El precompostaje y el vermicompostaje disminuyeron el número y tipo de bacterias resistentes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.