High-chromium ferritic stainless HiperFer steels were developed for high-temperature applications in power conversion equipment. The presented research describes the precipitation behavior of the Laves phase after the thermomechanical treatment of Fe-17Cr-0.6Nb-2.4W HiperFer alloys with and without the addition of 55 ppm boron. The boron-alloyed variant was produced with the aim of enhancing grain boundary strengthening and consequently increasing creep resistance. The focus is set on the effect of boron on the thermomechanically induced precipitation of (Fe,Cr,Si)2(Nb,W) Laves phase at grain boundaries. The addition of boron modifies the diffusion conditions in the area of grain boundaries. Consequently, the formation of Laves phase is promoted and the particle growth and coarsening process are suppressed. The impact of boron addition was validated by performing creep and thermomechanical fatigue testing in the standard processing state of HiperFer steel. In the B-alloyed variant, increased creep ductility through the modification of the particle-free zone widths at high-angle grain boundaries was encountered. Nevertheless, an optimized thermomechanical treatment is necessary to fully utilize the increased ductility effect for the creep strength optimization of the B-alloyed grade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.