Cytochrome P450 monooxygenases are of outstanding interest for the synthesis of pharmaceuticals and fine chemicals, due to their ability to hydroxylate C--H bonds mainly in a stereo- and regioselective manner. CYP106A2 from Bacillus megaterium ATCC 13368, one of only a few known bacterial steroid hydroxylases, enables the oxidation of 3-keto-4-ene steroids mainly at position 15. We expressed this enzyme together with the electron-transfer partners bovine adrenodoxin and adrenodoxin reductase in Escherichia coli. Additionally an enzyme-coupled cofactor regeneration system was implemented by expressing alcohol dehydrogenase from Lactobacillus brevis. By studying the conversion of progesterone and testosterone, the bottlenecks of these P450-catalyzed hydroxylations were identified. Substrate transport into the cell and substrate solubility turned out to be crucial for the overall performance. Based on these investigations we developed a new concept for CYP106A2-catalyzed steroid hydroxylations by which the productivity of progesterone and testosterone conversion could be increased up to 18-fold to yield an absolute productivity up to 5.5 g L(-1) d(-1). Product extraction with absorber resins allowed the recovery of quantitative amounts of 15beta-OH-progesterone and 15beta-OH-testosterone and also the reuse of the biocatalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.