Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants. They have been identified as a type of carcinogenic substance and are relatively widespread in environment media such as air, water and soils, constituting a significant hazard for human health. In many parts of the world, PAHs are still found in high concentrations despite improved legislation and monitoring, and it is therefore vital defining their profiles, and assessing their potential sources. This study focused on a large region of the south of Italy, where concentration levels, profiles, possible sources and toxicity equivalent quantity (TEQ) level of sixteen PAHs were investigated. The survey included soils from five large regions of the south of Italy: 80 soil samples (0-20 cm top layer) from urban and rural locations were collected and analysed by gas chromatography-mass spectrometry. Total PAHs and individual molecular compounds from the US Environmental Protection Agency priority pollutants list were identified and measured. Results showed that 16 PAHs varied significantly in urban and rural areas, and different regions presented discordant characteristics. Urban areas presented concentrations ranging from 7.62 to 755 ng g (mean = 84.85 ng g), whilst rural areas presented ranges from 1.87 to 11,353 ng g (mean = 333 ng g). Large urban areas, such as Rome, Naples and Palermo, exhibited high PAHs total concentration, but high values were also found in rural areas of Campania region. Different PAHs molecular ratios were used as diagnostic fingerprinting for source identification: LWMPAHs/HWMPAHs, Fluo/(Fluo + Pyr), BaA/(BaA + Chr), Ant/(Ant + Phe) and IcdP/(IcdP + BghiP). These ratios indicated that PAHs sources in the study area were mainly of pyrogenic origin, i.e. mostly related to biomass combustion and vehicular emission. On the other hand, values in Sicilian soils seemed to indicate a petrogenic origin, possibly linked to emissions from crude oil combustion and refineries present in the region. Finally, results allowed to calculate the toxicity equivalent quantity (TEQ) levels for the various locations sampled, highlighting that the highest values were found in the Campania region, with 661 and 54.20 ng g, in rural and urban areas, respectively. These findings, which could be linked to the presence of a large solid waste incinerator plant, but also to well-documented illegal waste disposal and burning, suggest that exposure to PAH may be posing an increased risk to human health in some of the studied areas.
The geographical distribution of concentration values for harmful elements was determined in the Campania region, Italy. The study area consists of the drainage basin of the River Calore, a tributary of the river Volturno, the largest Southern Italian river. The results provide reliable analytical data allowing a quantitative assessment of the trace element pollution threat to the ecosystem and human health. Altogether 562 stream sediment samples were collected at a sampling density of 1 site per 5 km. All samples were air-dried, sieved to <100 mesh fraction and analyzed for 37 elements after an aqua regia extraction by a combination of ICP-AES and ICP-MS. In addition to elemental analysis, gamma-ray spectrometry data were collected (a total of 562 measurements) using a hand-held Scintrex GRS-500 spectrometer. Statistical analyses were performed to show the single-element distribution and the distribution of elemental association factor scores resulting from R-mode factor analyses. Maps showing element distributions were made using GeoDAS and ArcGIS software. Our study showed that, despite evidence from concentrations of many elements for enrichment over natural background values, the spatial distribution of major and trace elements in Calore River basin is determined mostly by geogenic factors. The southwestern area of the basin highlighted an enrichment of many elements potentially harmful for human health and other living organisms (Al, Fe, K, Na, As, Cd, La, Pb, Th, Tl, U); however, these anomalies are due to the presence of pyroclastic and alkaline volcanic lithologies. Even where sedimentary lithologies occur, many harmful elements (Co, Cr, Mn, Ni) showed high concentration levels due to natural origins. Conversely, a strong heavy metal contamination (Pb, Zn, Cu, Sb, Ag, Au, Hg), due to an anthropogenic contribution, is highlighted in many areas characterized by the presence of road junctions, urban settlements and industrial areas. The enrichment factor of these elements is 3-4 times higher than the background values. The southwestern area of the basin is characterized by a moderate/high degree of contamination, just where the two busiest roads of the area run and the highest concentration of industries occurs.
Native plant species were screened for their remediation potential for the removal of Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil of Bagnoli brownfield site (Southern Italy). Soils at this site contain all of the PAHs congeners at concentration levels well above the contamination threshold limits established by Italian environmental legislation for residential/recreational land use, which represent the remediation target. The concentration of 13 High Molecular Weight Polycyclic Aromatic Hydrocarbons in soil rhizosphere, plants roots and plants leaves was assessed in order to evaluate native plants suitability for a gentle remediation of the study area. Analysis of soil microorganisms are provides important knowledge about bioremediation approach. Alphaproteobacteria , Betaproteobacteria , Gammaproteobacteria are the main phyla of bacteria observed in polluted soil. Functional metagenomics showed changes in dioxygenases, laccase, protocatechuate, and benzoate-degrading enzyme genes. Indolacetic acid production, siderophores release, exopolysaccharides production and ammonia production are the key for the selection of the rhizosphere bacterial population. Our data demonstrated that the natural plant-bacteria partnership is the best strategy for the remediation of a PAHs-contaminated soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.