In order to identify the determinants responsible for the nuclear migration of simian virus 40 (SV40) polypeptide VP1, the 5′‐terminal portion of the SV40 VP1 gene was fused with the complete cDNA sequence of poliovirus capsid polypeptide VP1 and the hybrid gene was inserted into an SV40 vector in place of the normal SV40 VP1 gene. Deletions of various length were generated in the SV40 VP1 portion of the hybrid gene, resulting in a set of truncated genes encoding 2‐40 NH2‐terminal amino acids from SV40 VP1, followed by poliovirus VP1. Monkey kidney cells were infected by the deleted hybrid viruses in the presence of an early SV40 amber mutant as helper, and the subcellular localization of the fusion proteins was determined by indirect immunofluorescence using an anti‐poliovirus VP1 immune serum. The presence of the first 11 NH2‐terminal amino acids from SV40 VP1 was found to be sufficient to target the fusion protein to the cell nucleus. Deletions extending from the NH2‐ towards the COOH‐terminal end of the protein were next generated. Transport of the SV40 VP1‐poliovirus VP1 fusion polypeptide to the nucleus was abolished when the first eight amino acids from SV40 VP1 were deleted. Thus the sequence of the first eight NH2‐terminal amino acids of SV40 VP1 appears to contain a nuclear migration signal which is sufficient to target the protein to the cell nucleus.
Unlike all other picornaviruses, the primary cleavage of the hepatitis A virus (HAV) polyprotein occurs at the 2A/2B junction and is carried out by the only proteinase encoded by the virus, 3Cpro . The resulting P1-2A capsid protein precursor is subsequently cleaved by 3C pro to generate VP0, VP3, and VP1-2A, which associate as pentamers. An unidentified cellular proteinase acting at the VP1/2A junction releases the mature capsid protein VP1 from VP1-2A later in the morphogenesis process. Although these aspects of polyprotein processing are well characterized, the function of 2A is unknown. To study its role in the viral life cycle, we assessed the infectivity of synthetic, genome-length RNAs containing 11 different in-frame deletions in the 2A region. Deletions in the N-terminal 40% of 2A abolished infectivity, whereas deletions in the C-terminal 60% resulted in viruses with a small-focus replication phenotype. C-terminal deletions in 2A had no effect on RNA replication kinetics under one-step growth conditions, nor did they have an effect on capsid protein synthesis and 3C pro -mediated processing. However, C-terminal deletions in 2A altered the VP1/2A cleavage, resulting in accumulation of uncleaved VP1-2A precursor in virions and possibly accounting for a delay in the appearance of infectious particles with these mutants, as well as a fourfold decrease in specific infectivity of the virus particles. When the capsid proteins were expressed from recombinant vaccinia viruses, the N-terminal part of 2A was required for efficient cleavage of the P1-2A precursor by 3C pro and assembly of structural precursors into pentamers. These data indicate that the N-terminal domain of 2A must be present as a C-terminal extension of P1 for folding of the capsid protein precursor to allow efficient 3C pro -mediated cleavages and to promote pentamer assembly, after which cleavage at the VP1/2A junction releases the mature VP1 protein, a process that appears to be necessary to produce highly infectious particles.
A cDNA fragment coding for poliovirus capsid polypeptide VP1 was inserted into a simian virus 40 (SV40) genome in the place of the SV40 VP1 gene and fused in phase to the 3' end of the VP2-VP3 genes. Simian cells were infected with the resulting hybrid virus in the presence of an early SV40 mutant used as a helper. Indirect immunofluorescence analysis of the infected cells using anti-poliovirus VP1 immune serum revealed that the SV40/poliovirus fusion protein was located inside the cell nucleus. Deletions of various lengths were generated in the SV40 VP2-VP3 portion of the hybrid gene using BAL 31 nuclease. The resulting virus genomes expressed spliced fusion proteins whose intracellular location was either intranuclear or intracytoplasmic, depending on the presence or absence of VP2 amino acid residues 317 to 323 (Pro-Asn-Lys-Lys-Lys-Arg-Lys). This was confirmed by site-directed mutagenesis of the Lys residue at position 320. Modification of Lys-320 into either Thr or Asn abolished the nuclear accumulation of the fusion protein. It is concluded that at least part of the sequence of VP2 amino acids 317 to 323 allows VP2 and VP3 to remain stably located inside the cell nucleus. The proteins are most probably transported from the cell cytoplasm to the cell nucleus by interaction, with VP1 acting as a carrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.