In this paper we initiate the study of form factors for the massless scattering of integrable AdS2 superstrings, where the difference-form of the S-matrix can be exploited to implement the relativistic form factor bootstrap. The non-standard nature of the S-matrix implies that traditional methods do not apply. We use the fact that the massless AdS2S-matrix is a limit of a better-behaved S-matrix found by Fendley. We show that the previously conjectured massless AdS2 dressing factor coincides with the limit of the De Martino-Moriconi improved dressing factor for the Fendley S-matrix. We then solve the form factor constraints in the two-particle case. Along the way we find a method to construct integral representations of relativistic dressing factors satisfying specific assumptions, and use it to obtain analytic proofs of crossing and unitarity relations.
We analyse super non-Abelian T-duality for principal chiral models, symmetric space sigma models, and semi-symmetric space sigma models for general Lie supergroups. This includes T-duality along both bosonic and fermionic directions. Specifically, super non-Abelian T-duality exchanges the Maurer-Cartan equations with the equations of motion thus mapping integrable models into integrable models. This, in turn, allows us to construct the T-dual Lax connections. As a prime example, we analyse the OSpp1|2q principal chiral model, and whilst the target superspace of this model is a three-dimensional supergravity background, we argue that its super non-Abelian T-dual falls outside the class of such backgrounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.