The Mediterranean basin hosts a high diversity of plants and bees, and it is considered one of the world’s biodiversity hotspots. Insect pollination, i.e., pollen transfer from male reproductive structures to conspecific female ones, was classically thought to be a mutualistic relationship that links these two groups of organisms, giving rise to an admirable and complex network of interactions. Although nectar is often involved in mediating these interactions, relatively little is known about modifications in its chemical traits during the evolution of plants. Here, we examine how the current sucrose-dominated floral nectar of most Mediterranean plants could have arisen in the course of evolution of angiosperms. The transition from hexose-rich to sucrose-rich nectar secretion was probably triggered by increasing temperature and aridity during the Cretaceous period, when most angiosperms were radiating. This transition may have opened new ecological niches for new groups of insects that were co-diversifying with angiosperms and for specific nectar-dwelling yeasts that originated later (i.e., Metschnikowiaceae). Our hypothesis embeds recent discoveries in nectar biology, such as the involvement of nectar microbiota and nectar secondary metabolites in shaping interactions with pollinators, and it suggests a complex, multifaceted ecological and evolutionary scenario that we are just beginning to discover.
In recent years, our understanding of the complex chemistry of floral nectar and its ecological implications for plant-pollinator relationships has certainly increased. Nectar is no longer considered merely a reward for pollinators but rather a plant interface for complex interactions with insects and other organisms. A particular class of compounds, i.e., nectar secondary compounds (NSCs), has contributed to this new perspective, framing nectar in a more comprehensive ecological context. The aim of this review is to draft an overview of our current knowledge of NSCs, including emerging aspects such as non-protein amino acids and biogenic amines, whose presence in nectar was highlighted quite recently. After considering the implications of the different classes of NSCs in the pollination scenario, we discuss hypotheses regarding the evolution of such complex nectar profiles and provide cues for future research on plant-pollinator relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.