SummaryThe Arabidopsis AtMYB41 gene encodes an R2R3-MYB transcription factor whose expression is not detectable under normal growth conditions in any organ or at any developmental stage analysed. It is expressed at high levels in response to drought, ABA and salt treatments, suggesting a possible role in stress responses. Transgenic lines over-expressing this transcription factor showed a pleiotropic phenotype similar to that exhibited by some mutants that affect cuticle biosynthesis. This includes a dwarf appearance, dependent on smaller cells with abnormal morphology, enhanced sensitivity to desiccation, and enhanced permeability of leaf surfaces, suggesting discontinuity in the cuticle. The expression of genes involved in lipid metabolism and transport, in cell-wall modifications and cell expansion, genes coding for membrane-associated proteins and genes specifically involved in cuticle metabolism was differentially modulated between wild-type and transgenic plants, suggesting a direct or indirect role of AtMYB41 in the regulation of their transcription. Taken together, our results suggest that AtMYB41 is part of a complex network of transcription factors controlling cell expansion and cuticle deposition in response to abiotic stress.
Miniaturized propulsion systems can enable many future CubeSats missions. The advancement of the Technology Readiness Level of this technology passes through the integration in a CubeSat platform and the assessment of the impact and the interactions of the propulsion systems on the actual CubeSat technology and vice versa. The request of power, the thermal environmental, and the electromagnetic emissions generated inside the platform require careful analyses. This paper presents the upgraded design and the validation of a CubeSat test platform (CTP) that can interface a wide range of new miniaturized propulsion systems and gather unprecedented information for these analyses, which can be fused with the commonly used ground support equipment. The CTP features are reported, and the main achievements of the tests are shown, demonstrating the effective capabilities of the platform and how it allows for the investigation of the mutual interactions at system level between propulsion systems and the CubeSat technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.