Sepsis is the leading cause of death in intensive care units. Although many different treatments for sepsis have been tested, sepsis-related mortality rates remain high. It was hypothesized in this study that treatment with human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) would protect renal, hepatic, and endothelial function in a model of sepsis in rats. Treatment with WJ-MSCs improved the glomerular filtration rate, improved tubular function, decreased expression of nuclear factor κB and of cytokines, increased expression of eNOS and of Klotho, attenuated renal apoptosis, and improved survival. Sepsis-induced acute kidney injury is a state of Klotho deficiency, which WJ-MSCs can attenuate.
BackgroundDespite a significant improvement in the management of chronic kidney disease (CKD), its incidence and prevalence has been increasing over the years. Progressive renal fibrosis is present in CKD and involves the participation of several cytokines, including Transforming growth factor-β1 (TGF-β1). Besides cardiovascular diseases and infections, several studies show that Vitamin D status has been considered as a non-traditional risk factor for the progression of CKD. Given the importance of vitamin D in the maintenance of essential physiological functions, we studied the events involved in the chronic kidney disease progression in rats submitted to ischemia/reperfusion injury under vitamin D deficiency (VDD).MethodsRats were randomized into four groups: Control; VDD; ischemia/reperfusion injury (IRI); and VDD+IRI. At the 62 day after sham or IRI surgery, we measured inulin clearance, biochemical variables and hemodynamic parameters. In kidney tissue, we performed immunoblotting to quantify expression of Klotho, TGF-β, and vitamin D receptor (VDR); gene expression to evaluate renin, angiotensinogen, and angiotensin-converting enzyme; and immunohistochemical staining for ED1 (macrophages), type IV collagen, fibronectin, vimentin, and α-smooth mucle actin. Histomorphometric studies were performed to evaluate fractional interstitial area.ResultsIRI animals presented renal hypertrophy, increased levels of mean blood pressure and plasma PTH. Furthermore, expansion of the interstitial area, increased infiltration of ED1 cells, increased expression of collagen IV, fibronectin, vimentin and α-actin, and reduced expression of Klotho protein were observed. VDD deficiency contributed to increased levels of plasma PTH as well as for important chronic tubulointerstitial changes (fibrosis, inflammatory infiltration, tubular dilation and atrophy), increased expression of TGF-β1 and decreased expression of VDR and Klotho protein observed in VDD+IRI animals.ConclusionThrough inflammatory pathways and involvement of TGF-β1 growth factor, VDD could be considered as an aggravating factor for tubulointerstitial damage and fibrosis progression following acute kidney injury induced by ischemia/reperfusion.
The pathogenesis of chronic kidney disease (CKD) involves a very complex interaction between hemodynamic and inflammatory processes, leading to glomerular/vascular sclerosis, and fibrosis formation with subsequent evolution to end-stage of renal disease. Despite efforts to minimize the progression of CKD, its incidence and prevalence continue to increase. Besides cardiovascular diseases and infections, several studies demonstrate that vitamin D status could be considered as a non-traditional risk factor for the progression of CKD. Therefore, we investigated the effects of vitamin D deficiency (VDD) in the course of moderate CKD in 5/6 nephrectomized rats (Nx). Adult male Wistar rats underwent Sham surgery or Nx and were subdivided into the following four groups: Sham, receiving standard diet (Sham); Sham VDD, receiving vitamin D-free diet (VDD); Nx, receiving standard diet (Nx); and VDD+Nx, receiving vitamin D-free diet (VDD+Nx). Sham or Nx surgeries were performed 30 days after standard or vitamin D-free diets administration. After validation of vitamin D depletion, we considered only Nx and VDD+Nx groups for the following studies. Sixty days after surgeries, VDD+Nx rats exhibited hypertension, a greater decline in renal function and plasma FGF-23 levels, renal hypertrophy, as well as higher plasma levels of PTH and aldosterone. In addition, those animals presented more significant chronic tubulointerstitial changes (cortical interstitial expansion/inflammation/fibrosis), higher expression of collagen IV, fibronectin and α-smooth muscle actin, and lower expressions of JG12 and M2 macrophages. Also, VDD+Nx rats had greater infiltration of inflammatory cells (M1 macrophages and T-cells). Such changes were accompanied by higher expression of TGF-β1 and angiotensinogen and decreased expression of VDR and Klotho protein. Our observations indicate that vitamin D deficiency impairs the renal function and worsens the renovascular and morphological changes, aggravating the features of moderate CKD in 5/6 nephrectomized rats.
Vitamin D deficiency (VDD) increases the risk of death in hospitalized patients. Renal ischemia/reperfusion injury (IRI) induces acute kidney injury (AKI), which activates cell cycle inhibitors, including p21, a cyclin-dependent kinase inhibitor and genomic target of 25-hydroxyvitamin D, which is in turn a potent immunomodulator with antiproliferative effects. In this study, we assess the impact of VDD in renal IRI. Wistar rats were divided into groups, each evaluated for 30 days: control (receiving a standard diet); VDD (receiving a vitamin D-free diet); IRI (receiving a standard diet and subjected to 45-min bilateral renal ischemia on day 28); and VDD + IRI (receiving a vitamin D-free diet and subjected to 45-min bilateral renal ischemia on day 28). At 48 h after IRI, animals were euthanized; blood, urine, and kidney tissue samples were collected. Compared with IRI rats, VDD + IRI rats showed a more severe decrease in glomerular filtration rate, greater urinary protein excretion, a higher kidney/body weight ratio and lower renal aquaporin 2 expression, as well as greater morphological damage, characterized by increased interstitial area and tubular necrosis. Our results suggest that the severity of tubular damage in IRI may be associated with downregulation of vitamin D receptors and p21. VDD increases renal inflammation, cell proliferation and cell injury in ischemic AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.