We provide a new method to construct the S-matrix in quantum field theory. This method implements crossing symmetry manifestly by erasing the a priori distinction between in- and out-states. It allows the description of processes where the interaction weakens with distance in space, but remains strong in the center at all times. It should also be applicable to certain spacetimes where the conventional method fails due to lack of temporal asymptotic states.Comment: 4 pages, LaTeX + revtex4; v2: normalization factors corrected; v3: two paragraphs added, minor corrections and enhancements, reference list updated; v4: references corrected/update
We unify and generalize the notions of vacuum and amplitude in linear quantum field theory in curved spacetime. Crucially, the generalized notion admits a localization in spacetime regions and on hypersurfaces. The underlying concept is that of a Lagrangian subspace of the space of complexified germs of solutions of the equations of motion on hypersurfaces. Traditional vacua and traditional amplitudes correspond to the special cases of definite and real Lagrangian subspaces respectively. Further, we introduce both infinitesimal and asymptotic methods for vacuum selection that involve a localized version of Wick rotation. We provide examples from Klein-Gordon theory in settings involving different types of regions and hypersurfaces to showcase generalized vacua and the application of the proposed vacuum selection methods. A recurrent theme is the occurrence of mixed vacua, where propagating solutions yield definite Lagrangian subspaces and evanescent solutions yield real Lagrangian subspaces. The examples cover Minkowski space, Rindler space, Euclidean space and de Sitter space. A simple formula allows for the calculation of expectation values for observables in the generalized vacua. *
Theoretical developments related to the gravitational interaction have questioned the notion of particle in quantum field theory (QFT). For instance, uniquely-defined particle states do not exist in general, in QFT on a curved spacetime. More in general, particle states are difficult to define in a background-independent quantum theory of gravity. These difficulties have lead some to suggest that in general QFT should not be interpreted in terms of particle states, but rather in terms of eigenstates of local operators. Still, it is not obvious how to reconcile this view with the empiricallyobserved ubiquitous particle-like behavior of quantum fields, apparent for instance in experimental high-energy physics, or "particle"-physics. Here we offer an element of clarification by observing that already in flat space there exist -strictly speaking-two distinct notions of particles: globally defined n-particle Fock-states and local particle states. The last describe the physical objects detected by finite-size particle detectors and are eigenstates of local field operators. In the limit in which the particle detectors are appropriately large, global and local particle states converge in a weak topology (but not in norm). This observation has little relevance for flat-space theories -it amounts to a reminder that there are boundary effects in realistic detectors-; but is relevant for gravity. It reconciles the two points of view mentioned above. More importantly, it provides a definition of local particle state that remains well-defined even when the conventional global particle states are not defined. This definition plays an important role in quantum gravity. * Unité mixte de recherche (UMR 6207) du CNRS et des Universités de Provence (Aix-Marseille I), de la Méditerranée (Aix-Marseille II) et du Sud (Toulon-Var); laboratoire affiliéà la FRUMAM (FR 2291).
We extend the framework of general boundary quantum field theory (GBQFT) to achieve a fully local description of realistic quantum field theories. This requires the quantization of non-Kähler polarizations which occur generically on timelike hypersurfaces in Lorentzian spacetimes as has been shown recently. We achieve this in two ways: On the one hand we replace Hilbert space states by observables localized on hypersurfaces, in the spirit of algebraic quantum field theory. On the other hand we apply the GNS construction to twisted star-structures to obtain Hilbert spaces, motivated by the notion of reflection positivity of the Euclidean approach to quantum field theory. As one consequence, the well-known representation of a vacuum state in terms of a sea of particle pairs in the Hilbert space of another vacuum admits a vast generalization to non-Kähler vacua, particularly relevant on timelike hypersurfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.