The detection of phase transitions in quantum many-body systems with lowest possible prior knowledge of their details is among the most rousing goals of the flourishing application of machine-learning techniques to physical questions. Here, we train a Generative Adversarial Network (GAN) with the Entanglement Spectrum of a system bipartition, as extracted by means of Matrix Product States ansätze. We are able to identify gapless-to-gapped phase transitions in different one-dimensional
models by looking at the machine inability to reconstruct outsider data with respect to the training set. We foresee that GAN-based methods will become instrumental in anomaly detection schemes applied to the determination of phase-diagrams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.