In this letter we focus on the evaluation of linklevel performance of LoRa technology, in the usual network scenario with a central gateway and high-density deployment of end-devices. LoRa technology achieves wide coverage areas, low power consumption and robustness to interference thanks to a chirp spread-spectrum modulation, in which chirps modulated with different spreading factors (SFs) are quasi-orthogonal. We focus on the performance analysis of a single receiver in presence of collisions. First, we analyze LoRa modulation numerically and show that collisions between packets modulated with different SFs can indeed cause packet loss if the interference power received is strong enough. Second, we validate such findings in experiments based on commercial devices and softwaredefined radios. Contradicting the common belief that SFs can be considered orthogonal, our results demonstrate that inter-SF collisions are indeed an issue in LoRa networks and, thus, allocating higher SFs to users far from the gateway might not necessarily improve their link capacity, in case of congested networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.