Microbubble resonators combine the unique properties of whispering gallery mode resonators with the intrinsic capability of integrated microfluidics. Here an improved fabrication method of microbubble resonators is presented, based on the heating of a slightly pressurized capillary by a rotating arc discharge. Rotation of the electrodes, moved out of a fiber splicer, ensures a homogeneous distribution of the heat all over the capillary surface. The demonstrated microbubble resonators have Q factors up to 6×10(7) at 1550 nm. Microbubbles were filled with water and aqueous solutions of ethanol in order to test the refractive index sensing capabilities of such resonators, which also show a good temporal stability. The limit of detection of our microbubble resonator sensor is 10(-6) RIU.
High quality factor whispering-gallery-mode microresonators are ideally suited for nonlinear optical interactions. We analyze, experimentally and theoretically, a variety of χ((3)) nonlinear interactions in silica microspheres, consisting of third harmonic generation and Raman assisted third order sum-frequency generation in the visible. A tunable, room temperature, cw multicolor emission in silica microspherical whispering-gallery-mode microresonators has been achieved by controlling the cavity mode dispersion and exciting nonequatorial modes for efficient frequency conversion.
Cavity resonant enhanced stimulated Raman scattering (SRS), four-wave mixing, and broadband hyper-parametric oscillation in silica microbubble whispering gallery mode resonators (WGMR) in forward and backward directions are reported in this Letter. We show that microbubbles can operate not only in a highly ideal two-photon emission regime, but also generate combs, both natively and multi-mode spaced. The nonlinear process is phase matched because of the interaction of different mode families of the resonator.
A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 μm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.