Laser forming of open-cell aluminum foams has been modeled by means of a 3D finite element model which is able to take into account the real foam geometry as well as the main process variables. A parametric procedure has been defined for the geometry construction and meshing, and the simulation run. In order to calibrate and validate numerical modeling, compression and flexure tests were performed on a closed-cell aluminum foam. The simulation of mechanical tests allowed a correct modeling of the aluminum alloy behavior under plastic deformation. The same material behavior was implemented in a complex thermo-mechanical model for laser bending simulation. The final model is able to predict the shape evolution during forming and the correlation between process variables and final bent angles.
Laser forming ofopen-cell aluminum foams can be modeled by means of 3D thermo-mechanical models but the correct evaluation of the alloy material properties is a key-factor for obtaining good predictions. In order to increase the model predictability from a quantitative point of view, further information about the material behavior under laser exposure is necessary. In this study the effect of the temperature on the mechanical properties of a commercial aluminum sponge has been evaluated in terms of yielding stress and tangent modulus. Experimental tests have been performed by compression and used to infer mechanical properties by means of a 3D FE model. The same approach has been used also to evaluate the effect of a heat treatment of the sponge on the material behavior during forming. In conclusion numerical simulation of laser heating has been used to show the effect of the laser-material interaction on the final homogeneity of processed foams.
The numerical simulation of the compression behavior of open-cell aluminum foams is discussed as a way to extract material property information for laser forming simulation. A bilinear isotropic model was implemented for the alloy base material whereas a parametric approach was used to build the finite element model of the foam structure. Compression tests were performed on commercial foams with different pore size and density, and the results of lower density foam were used for the model validation. Numerical results show a good agreement with experimental data in terms of foam deformation under compression and required loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.