The phenology model is useful for timing IGR applications and for setting up monitoring activities in supervised S. titanus control. The model is an entry point into an adaptive management system, in that real-time weather and monitoring data are continuously integrated into the model for improving its explanatory and predictive capabilities.
Summary
Mature turnip plants, mechanically infected as seedlings with the semi‐persistent, aphid transmitted caulimovirus, cauliflower mosaic (CaMV), were treated by spraying with either a solution of Pymetrozine plus adjuvant oil, adjuvant oil or water only. At the same time turnip seedlings were sprayed for each of the three treatments. Two h after spraying, Myzus persicae were caged onto an infected turnip plant for each of the three treatments. Twenty four h later, groups of 20 aphids were transferred from the infected plants, to seedlings from each of the three treatments. After 24 h, these were removed and seedlings were later recorded for infection. This acquisition/transmission assay was repeated at 3, 7, 14 and 21 days from treatment. Only aphids exposed to the Pymetrozine treated source plants were shown to move off the plant and failed to transmit CaMV effectively to treated or control seedlings during the 0 and 3 day assays. The majority soon died when transferred to test seedlings. Progressively, more aphids were found to survive and transmit CaMV during the 7 day and 14 day assays. By 21 days no significant effect could be recorded between treatments and controls. Aphids transferred from control treated source plants to Pymetrozine treated seedlings were able to transmit CaMV within all the assays, although higher mortality was recorded in the day 0 assessment when compared to those transferred to control treated seedlings. We conclude from this trial, that a single foliar treatment of 100 mg litre1 Pymetrozine to CaMV infected turnip plants, effectively reduces the vectoring capability of M. persicae, that feed on these plants, for up to 7 days. However, Pymetrozine failed to stop virus transmission to treated seedlings from the ingress of viruliferous aphids. Pymetrozine was not shown to cause any phytotoxic responses to plants used in this trial.
The Nearctic leafhopperScaphoideus titanusBall (Hemiptera: Cicadellidae) was accidentally introduced in Europe, where it became the vector of the ‘Candidatus Phytoplasma vitis’ phytoplasma causing the ‘Flavescence dorée’ disease of grapevine plants. A time-varying distributed delay model, simulating the successive occurrences of egg hatching, nymph presence, and adult emergence, is extended here to represent multi-generation infestation patterns of grapevine plants inhabited by eggs, nymphs, and adults. The model extension includes intrinsic mortality, mortality caused by plant dormancy, and low temperatures, development of diapausing and post-diapausing eggs, fecundity rates, and adult longevity. Field observations and published data were used to estimate parameters. The model was validated with five years canopy infestation data from five vineyards not subjected to insecticide treatments and found to have satisfactory explicative and predictive qualities. The model output is most sensitive to a 10% variation in the upper threshold and in the shape parameters of the survivorship function and least sensitive to a 10% variation in the shape parameters of the development function and the survivorship level. Recommendations are made to take into account other factors than temperature and plant phenology and include a wider geographical area in further model development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.