Recent works highlighted the significant potential of lung ultrasound (LUS) imaging in the management of subjects affected by COVID-19. In general, the development of objective, fast, and accurate automatic methods for LUS data evaluation is still at an early stage. This is particularly true for COVID-19 diagnostic. In this article, we propose an automatic and unsupervised method for the detection and localization of the pleural line in LUS data based on the hidden Markov model and Viterbi Algorithm. The pleural line localization step is followed by a supervised classification procedure based on the support vector machine (SVM). The classifier evaluates the healthiness level of a patient and, if present, the severity of the pathology, i.e., the score value for each image of a given LUS acquisition. The experiments performed on a variety of LUS data acquired in Italian hospitals with both linear and convex probes highlight the effectiveness of the proposed method. The average overall accuracy in detecting the pleura is 84% and 94% for convex and linear probes, respectively. The accuracy of the SVM classification in correctly evaluating the severity of COVID-19 related pleural line alterations is about 88% and 94% for convex and linear probes, respectively. The results as well as the visualization of the detected pleural line and the predicted score chart, provide a significant support to medical staff for further evaluating the patient condition.
LiDAR data have been widely used to characterize the three-dimensional structure of the forest. However, their use in a multitemporal framework has been quite limited due to the relevant challenges introduced by the comparison of pairs of point clouds. Because of the irregular sampling of the laser scanner and the complex structure of forest areas, it is not possible to perform a point-to-point comparison between the two data. To overcome these challenges, a novel hierarchical approach to the detection of 3-D changes in forest areas is proposed. The method first detects the large changes (e.g., cut trees) by comparing the Canopy Height Models (CHMs) derived from the two LiDAR data. Then, according to an object-based Change Detection (CD) approach, it identifies the single-tree changes by monitoring both the tree-top and the crown volume growth. The proposed approach can compare LiDAR data with significantly different pulse densities, thus allowing the use of many data available in real applications. Experimental results pointed out that the method can accurately detect large changes, exhibiting a low rate of false and missed alarms. Moreover, it can detect changes in terms of single-tree growth which are consistent with the expected growth rates of the considered areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.