We review the main results from the literature on the consequences of link and node removal in real social networks. We restrict our review to only those works that adopted the two most common measures of network robustness, i.e., the largest connected component (LCC) and network efficiency (Eff). We consider both binary and weighted network approaches. We show that the study of the response of social networks subjected to link/node removal turns out to be extremely useful for managing a number of real problems. For instance, we show that the consequences of the imposition of social distancing in many states to control the spread of COVID-19 could be analyzed within the framework of social network analysis. Our mini-review outlines that in social networks, it is necessary to consider the weight of links between persons to perform reliable analyses. Finally, we propose promising lines for future research in social network science.
Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at https://github.com/KULL-Centre/FRETpredict and as a Python PyPI package at https://pypi.org/project/FRETpredict.
In this paper, we model the excitation energy transfer (EET) of photosystem I (PSI) of the common pea plant Pisum sativum as a complex interacting network. The magnitude of the link energy transfer between nodes/chromophores is computed by Forster resonant energy transfer (FRET) using the pairwise physical distances between chromophores from the PDB 5L8R (Protein Data Bank). We measure the global PSI network EET efficiency adopting well-known network theory indicators: the network efficiency (Eff) and the largest connected component (LCC). We also account the number of connected nodes/chromophores to P700 (CN), a new ad hoc measure we introduce here to indicate how many nodes in the network can actually transfer energy to the P700 reaction centre. We find that when progressively removing the weak links of lower EET, the Eff decreases, while the EET paths integrity (LCC and CN) is still preserved. This finding would show that the PSI is a resilient system owning a large window of functioning feasibility and it is completely impaired only when removing most of the network links. From the study of different types of chromophore, we propose different primary functions within the PSI system: chlorophyll a (CLA) molecules are the central nodes in the EET process, while other chromophore types have different primary functions. Furthermore, we perform nodes removal simulations to understand how the nodes/chromophores malfunctioning may affect PSI functioning. We discover that the removal of the CLA triggers the fastest decrease in the Eff, confirming that CAL is the main contributors to the high EET efficiency. Our outcomes open new perspectives of research, such comparing the PSI energy transfer efficiency of different natural and agricultural plant species and investigating the light-harvesting mechanisms of artificial photosynthesis both in plant agriculture and in the field of solar energy applications.
The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.