Millions of distinct metal-organic frameworks (MOFs) can be made by combining metal nodes and organic linkers. At present, over 90,000 MOFs have been synthesized and over 500,000 predicted. This raises the question whether a new experimental or predicted structure adds new information. For MOF chemists, the chemical design space is a combination of pore geometry, metal nodes, organic linkers, and functional groups, but at present we do not have a formalism to quantify optimal coverage of chemical design space. In this work, we develop a machine learning method to quantify similarities of MOFs to analyse their chemical diversity. This diversity analysis identifies biases in the databases, and we show that such bias can lead to incorrect conclusions. The developed formalism in this study provides a simple and practical guideline to see whether new structures will have the potential for new insights, or constitute a relatively small variation of existing structures.
By combining metal nodes with organic linkers we can potentially synthesize millions of possible metal–organic frameworks (MOFs). The fact that we have so many materials opens many exciting avenues but also create new challenges. We simply have too many materials to be processed using conventional, brute force, methods. In this review, we show that having so many materials allows us to use big-data methods as a powerful technique to study these materials and to discover complex correlations. The first part of the review gives an introduction to the principles of big-data science. We show how to select appropriate training sets, survey approaches that are used to represent these materials in feature space, and review different learning architectures, as well as evaluation and interpretation strategies. In the second part, we review how the different approaches of machine learning have been applied to porous materials. In particular, we discuss applications in the field of gas storage and separation, the stability of these materials, their electronic properties, and their synthesis. Given the increasing interest of the scientific community in machine learning, we expect this list to rapidly expand in the coming years.
Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. We show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms.
We present a workflow that traces the path from the bulk structure of a crystalline material to assessing its performance in carbon capture from coal’s postcombustion flue gases. This workflow is applied to a database of 324 covalent–organic frameworks (COFs) reported in the literature, to characterize their CO2 adsorption properties using the following steps: (1) optimization of the crystal structure (atomic positions and unit cell) using density functional theory, (2) fitting atomic point charges based on the electron density, (3) characterizing the pore geometry of the structures before and after optimization, (4) computing carbon dioxide and nitrogen isotherms using grand canonical Monte Carlo simulations with an empirical interaction potential, and finally, (5) assessing the CO2 parasitic energy via process modeling. The full workflow has been encoded in the Automated Interactive Infrastructure and Database for Computational Science (AiiDA). Both the workflow and the automatically generated provenance graph of our calculations are made available on the Materials Cloud, allowing peers to inspect every input parameter and result along the workflow, download structures and files at intermediate stages, and start their research right from where this work has left off. In particular, our set of CURATED (Clean, Uniform, and Refined with Automatic Tracking from Experimental Database) COFs, having optimized geometry and high-quality DFT-derived point charges, are available for further investigations of gas adsorption properties. We plan to update the database as new COFs are being reported.
Pyrene-based MOFs have several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.