Groundwater management typically relies on water‐level data and spatially limited deformation measurements. While interferometric synthetic aperture radar has been used to study hydrological deformation, its limited temporal sampling can lead to biases in rapidly changing systems. Here we use 2011–2017 COSMO‐SkyMed data with revisit intervals as short as 1 day to study the response of the Santa Clara Valley (SCV) aquifer in California to the unprecedented 2012–2015 drought. Cross‐correlation and independent component analyses of deformation time series enable tracking water through the aquifer system. The aquifer properties are derived prior to and during the drought to assess the success of water‐resource management practices. Subsidence due to groundwater withdrawal dominates during 2011–2017, limited to the confined aquifer and west of the Silver Creek Fault, similar to predrought summer periods. Minimum water levels and elevations were reached in mid‐2014, but thanks to intensive groundwater management efforts the basin started to rebound in late 2014, during the deepening drought. By 2017, water levels were back to their predrought levels, while elevations had not yet fully rebounded due to the delayed poroelastic response of aquitards and their large elastic compressibility. As water levels did not reach a new lowstand, the drought led to only elastic and recoverable changes in the SCV. The SCV lost 0.09 km3 during the drought while seasonal variations amount to 0.02 km3. Analysis of surface loads due to water mass changes in the aquifer system suggests that groundwater drawdowns could influence the stress on nearby faults.
Spaceborne multi-temporal interferometric synthetic aperture radar (MT-InSAR) is a monitoring technique capable of extracting line of sight (LOS) cumulative surface displacement measurements with millimeter accuracy. Several improvements in the techniques and datasets quality led to more effective, near real time assessment and response, and a greater ability of constraining dynamically changing physical processes. Using examples of the COSMO-SkyMed (CSK) system, we present a methodology that bridges the gaps between MT-InSAR and the relative stiffness method for tunnel-induced subsidence damage assessment. The results allow quantification of the effect of the building on the settlement profile. As expected the greenfield deformation assessment tends to provide a conservative estimate in the majority of cases (~71% of the analyzed buildings), overestimating tensile strains up to 50%. With this work we show how these two techniques in the field of remote sensing and structural engineering can be synergistically used to complement and replace the traditional ground based analysis by providing an extended coverage and a temporally dense set of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.