Carbon dioxide concentration level is reaching a non-returning point. Carbon capture technologies are immature and short-term actions are necessary. The conversion of CO 2 into methanol is a technical challenge. Commercial copper-zinc-alumina catalysts convert maximum 7 % carbon dioxide in syngas at high pressures (5 MPa to 10 MPa) and moderate temperatures (473 K to 573 K) into methanol. However, there are not records on the synthesis of methanol at low pressure (P < 2.5 MPa) and without a large excess of hydrogen in the feed. Here, we tested three new catalysts prepared by co-precipitation of copper, zinc and aluminum nitrates (CZA), with strontium, magnesium or calcium as basic promoters to enhance CO 2 conversion to methanol. We discussed the microstructure of the catalysts according to the supersaturation of the relative carbonates formed during the co-precipitation synthesis. Compared to the benchmark, the sample doped with Ca showed higher carbon conversion with all the feed compositions tested (syngas, synthetic biosyngas and CO 2 with H 2 ). CZA doped with Sr is inactive in this reaction.
The aim of this work is to evaluate the potential application of a new sustainable technology, called Acid Gas to Syngas, on steam reforming process in order to reduce the carbon dioxide emissions. Indeed, steam reforming has high emissions of carbon dioxide, at almost 7 kg of carbon dioxide per 1 kg of hydrogen produced. The key idea of the new technology is to convert carbon dioxide and hydrogen sulfide coming from natural gas desulfurization into additional hydrogen. Coupling different software, i.e. Aspen HYSYS and MATLAB, a complete plant model, able to manage the recycle of unconverted acid gases, has been developed. The importance of introduced innovations is highlighted and a comparison between the old process and the new one with Acid Gas to Syngas technology is built up. With Acid Gas to Syngas technology the natural gas consumption and carbon dioxide emissions can be reduced up to 3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.