This paper presents the multitemporal adaptive processing (MAP3) framework for the treatment of multitemporal synthetic aperture radar (SAR) images. The framework is organized in three major activities dealing with calibration, adaptability, and representation. The processing chain has been designed looking at the simplicity, i.e., the minimization of the operations needed to obtain the products, and at the algorithms' availability in the literature. Innovation has been provided in the crosscalibration step, which is solved introducing the variable amplitude levels equalization (VALE) method, through which it is possible to establish a common metrics for the measurement of the amplitude levels exhibited by the images of the series. Representation issues are discussed with an application-based approach, supported by examples with regard to semiarid and temperate regions in which amplitude maps and interferometric coherence are combined in an original way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.