Nanoparticle-assisted "NMR chemosensing" is an experimental protocol that exploits the selective recognition abilities of nanoparticle receptors to detect and identify small molecules in complex mixtures by nuclear Overhauser effect magnetization transfer. Although the intrinsic sensitivity of the first reported protocols was modest, we have now found that water spins in long-lived association at the nanoparticle monolayer constitute an alternative source of magnetization that can deliver a remarkable boost of sensitivity, especially when combined with saturation transfer experiments. The approach is general and can be applied to analyte− nanoreceptor systems of different compositions. In this work, we provide an account of the new method and we propose a generalized procedure based on a joint water−nanoparticle saturation to further upgrade the sensitivity, which ultimately endows selective analyte detection down to the micromolar range on standard instrumentation.
Recent studies have
shown that gold nanoparticles (AuNPs) functionalized
with Zn(II) complexes can cleave phosphate esters and nucleic acids.
Remarkably, such synthetic nanonucleases appear to catalyze metal
(Zn)-aided hydrolytic reactions of nucleic acids similar to metallonuclease
enzymes. To clarify the reaction mechanism of these nanocatalysts,
here we have comparatively analyzed two nanonucleases with a >10-fold
difference in the catalytic efficiency for the hydrolysis of the 2-hydroxypropyl-4-nitrophenylphosphate
(HPNP, a typical RNA model substrate). We have used microsecond-long
atomistic simulations, integrated with NMR experiments, to investigate
the structure and dynamics of the outer coating monolayer of these
nanoparticles, either alone or in complex with HPNP, in solution.
We show that the most efficient one is characterized by coating ligands
that promote a well-organized monolayer structure, with the formation
of solvated bimetallic catalytic sites. Importantly, we have found
that these nanoparticles can mimic two-metal-ion enzymes for nucleic
acid processing, with Zn ions that promote HPNP binding at the reaction
center. Thus, the two-metal-ion-aided hydrolytic strategy of such
nanonucleases helps in explaining their catalytic efficiency for substrate
hydrolysis, in accordance with the experimental evidence. These mechanistic
insights reinforce the parallelism between such functionalized AuNPs
and proteins toward the rational design of more efficient catalysts.
Self-assembled gold nanoparticles onto colloidal silica nanoparticles exhibited higher magnetization transfer efficiencies in NMR chemosensing experiments, allowing the detection of analytes as low as 10 μM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.