Abstract-High-performance computing (HPC) is recognized as one of the pillars for further advance of science, industry, medicine, and education. Current HPC systems are being developed to overcome emerging challenges in order to reach Exascale level of performance, which is expected by the year 2020. The much larger embedded and mobile market allows for rapid development of IP blocks, and provides more flexibility in designing an application-specific SoC, un turn giving possibility in balancing performance, energy-efficiency and cost. In the Mont-Blanc project, we advocate for HPC systems be built from such commodity IP blocks, currently used in embedded and mobile SoCs.As a first demonstrator of such approach, we present the MontBlanc prototype; the first HPC system built with commodity SoCs, memories, and NICs from the embedded and mobile domain, and offthe-shelf HPC networking, storage, cooling and integration solutions. We present the system's architecture, and evaluation including both performance and energy efficiency. Further, we compare the system's abilities against a production level supercomputer. At the end, we discuss parallel scalability, and estimate the maximum scalability point of this approach across a set of applications.
Modern High-Performance Computing (HPC) and data center operators rely more and more on data analytics techniques to improve the efficiency and reliability of their operations. They employ models that ingest time-series monitoring sensor data and transform it into actionable knowledge for system tuning: a process known as Operational Data Analytics (ODA). However, monitoring data has a high dimensionality, is hardware-dependent and difficult to interpret. This, coupled with the strict requirements of ODA, makes most traditional data mining methods impractical and in turn renders this type of data cumbersome to process. Most current ODA solutions use ad-hoc processing methods that are not generic, are sensible to the sensors' features and are not fit for visualization.In this paper we propose a novel method, called Correlationwise Smoothing (CS), to extract descriptive signatures from timeseries monitoring data in a generic and lightweight way. Our CS method exploits correlations between data dimensions to form groups and produces image-like signatures that can be easily manipulated, visualized and compared. We evaluate the CS method on HPC-ODA, a collection of datasets that we release with this work, and show that it leads to the same performance as most state-of-the-art methods while producing signatures that are up to ten times smaller and up to ten times faster, while gaining visualizability, portability across systems and clear scaling properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.