Understanding and enabling the control of the properties of foams is important for a variety of commercial processes and consumer products. In these systems, the role of surface active compounds has been the subject of many investigations using a wide range of techniques. The study of their influence on simplified geometries such as two bubbles in a liquid or a thin film of solution (such as in the well-known Scheludko cell), has yielded important fundamental understanding. Similarly, in this work an interferometric technique is used to study the dynamic evolution of the film formed by a single bubble being pressed against a planar air-liquid interface. Here interferometry is used to dynamically measure the total volume of liquid contained within the thin-film region between the bubble and the planar interface. Three different small-molecule, surfactant solutions were investigated and the data obtained via interferometry were compared to measurements of the density of bulk foams of the same solutions. The density measurements were collected with a simple, but novel technique using a conical-shaped bubbling apparatus. The results reveal a strong correlation between the measurements on single bubbles and complete foams. This suggests that further investigations using interferometric techniques can be instrumental to building a more detailed mechanistic understanding of how different surface-active compounds influence foam properties. The results also reveal that the commonly used assumption that surfactant-laden interfaces may be modeled as immobile, is too simplistic to accurately model interfaces with small-molecule surfactants.
In this study, a state-of-the-art high-throughput experimentation (HTE) workflow for catalytic olefin polymerization, covering an unprecedented wide part of the polymer knowledge and value chains from catalytic synthesis all the way down to "engineering" microrheology, was thoroughly assessed with respect to its ability to prepare new materials and produce large and accurate databases for the investigation of quantitative structure−property relationships (QSPRs). Olefin blocks copolymers (OBCs) produced under chain-shuttling polymerization conditions were used as a demonstration case. The results of a thorough microstructural, structural, mechanical, morphological, and rheological characterization of OBC replicas prepared with the HTE synthetic platform and a commercial sample, chosen as a benchmark, demonstrate the robustness of the approach. The proposed workflow can become a paradigm for the high-throughput synthesis and investigation of novel materials, thus reducing the time to market of new products. In our opinion, this opens the door to integrated HTE and artificial intelligence approaches to QSPR problem solving in the numerous cases for which a thorough understanding of the theory is not sufficient to deterministically unravel the complexity of practical applications.
When a Newtonian bubble ruptures, the film retraction dynamics is controlled by the interplay of surface, inertial, and viscous forces. In case a viscoelastic liquid is considered, the scenario is enriched by the appearance of a new significant contribution, namely, the elastic force. In this paper, we investigate experimentally the retraction of viscoelastic bubbles inflated at different blowing rates, showing that the amount of elastic energy stored by the liquid film enclosing the bubble depends on the inflation history and in turn affects the velocity of film retraction when the bubble is punctured. Several viscoelastic liquids are considered. We also perform direct numerical simulations to support the experimental findings. Finally, we develop a simple heuristic model able to interpret the physical mechanism underlying the process.
We studied the foaming of polystyrene with CO2 as the physical blowing agent at large pressure drop rates (PDRs) and at different foaming temperatures, with a novel batch foaming apparatus, capable of reaching PDRs as high as 500 MPa/s (in the underlying literature, the maximum so far achieved is 100 MPa/s). Results show that, at each foaming temperature, the number of nucleated bubbles per unit initial volume (N) linearly increases with PDR in a bilogarithmic scale, with slopes increasing with the temperature. The effect of talc as the nucleating agent was also investigated. Furthermore, a phenomenological model was developed and utilized to predict N at PDRs not experimentally accessible. The approach was validated and a good agreement with the experimental data was obtained
We report the design and results of a novel process combining 3D printing and foaming to produce microfoamed polymeric structures, from simple strands to more complex architectures, using physical blowing agents. Foaming processes are extensively operated in polymeric cellular materials industry to produce pores, yet without spatial control of their positioning. This intrinsic stochasticity may introduce imperfections, which reduce the mechanical properties of the material, thus regular (e.g., periodic) porous structures would be more desirable. 3D printing allows to fabricate polymeric cellular materials with empty spaces in a well‐defined periodic structure. To this end, very expensive 3D printers are required to achieve micron‐resolution pores. Correspondingly, the production time is dramatically large and becomes a bottleneck to the industrial scale‐up. Herein, an innovative technique combining the simplicity of polymer foaming with the precision of 3D printing is presented. The resulting materials have the advantages of both the techniques: they have a micron‐controlled cell structure and can be printed at reasonable costs and time. The proposed approach is validated using a bio‐based and compostable polymer, namely, polylactic acid (PLA). The resulting foamed strands and hierarchical structures are novel in terms of morphology and show a controlled local porosity and superior mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.