Abstract. Pattern-diluted associative networks were introduced recently as models for the immune system, with nodes representing T-lymphocytes and stored patterns representing signalling protocols between T-and B-lymphocytes. It was shown earlier that in the regime of extreme pattern dilution, a system with N T Tlymphocytes can manage a number N B = O(N δ T ) of B-lymphocytes simultaneously, with δ < 1. Here we study this model in the extensive load regime N B = αN T , with also a high degree of pattern dilution, in agreement with immunological findings. We use graph theory and statistical mechanical analysis based on replica methods to show that in the finite-connectivity regime, where each T-lymphocyte interacts with a finite number of B-lymphocytes as N T → ∞, the T-lymphocytes can coordinate effective immune responses to an extensive number of distinct antigen invasions in parallel. As α increases, the system eventually undergoes a second order transition to a phase with clonal cross-talk interference, where the system's performance degrades gracefully. Mathematically, the model is equivalent to a spin system on a finitely connected graph with many short loops, so one would expect the available analytical methods, which all assume locally tree-like graphs, to fail. Yet it turns out to be solvable. Our results are supported by numerical simulations.
We study a multi-species spin glass system where the density of each species is kept fixed at increasing volumes. The model reduces to the Sherrington-Kirkpatrick one for the single species case. The existence of the thermodynamic limit is proved for all densities values under a convexity condition on the interaction. The thermodynamic properties of the model are investigated and the annealed, the replica symmetric and the replica symmetry breaking bounds are proved using Guerra's scheme. The annealed approximation is proved to be exact under a high temperature condition. We show that the replica symmetric solution has negative entropy at low temperatures. We study the properties of a suitably defined replica symmetry breaking solution and we optimise it within a novel ziggurat ansatz. The generalised order parameter is described by a Parisi-like partial differential equation.
Restricted Boltzmann machines are described by the Gibbs measure of a bipartite spin glass, which in turn can be seen as a generalized Hopfield network. This equivalence allows us to characterize the state of these systems in terms of their retrieval capabilities, both at low and high load, of pure states. We study the paramagnetic-spin glass and the spin glass-retrieval phase transitions, as the pattern (i.e., weight) distribution and spin (i.e., unit) priors vary smoothly from Gaussian real variables to Boolean discrete variables. Our analysis shows that the presence of a retrieval phase is robust and not peculiar to the standard Hopfield model with Boolean patterns. The retrieval region becomes larger when the pattern entries and retrieval units get more peaked and, conversely, when the hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at low load retrieval always exists below some critical temperature, for every pattern distribution ranging from the Boolean to the Gaussian case.
We study Generalised Restricted Boltzmann Machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as Generalised Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalisation in a teacher-student scenario of unsupervised learning.
Restricted Boltzmann machines are key tools in machine learning and are described by the energy function of bipartite spin-glasses. From a statistical mechanical perspective, they share the same Gibbs measure of Hopfield networks for associative memory. In this equivalence, weights in the former play as patterns in the latter. As Boltzmann machines usually require real weights to be trained with gradient-descent-like methods, while Hopfield networks typically store binary patterns to be able to retrieve, the investigation of a mixed Hebbian network, equipped with both real (e.g., Gaussian) and discrete (e.g., Boolean) patterns naturally arises. We prove that, in the challenging regime of a high storage of real patterns, where retrieval is forbidden, an additional load of Boolean patterns can still be retrieved, as long as the ratio between the overall load and the network size does not exceed a critical threshold, that turns out to be the same of the standard Amit–Gutfreund–Sompolinsky theory. Assuming replica symmetry, we study the case of a low load of Boolean patterns combining the stochastic stability and Hamilton-Jacobi interpolating techniques. The result can be extended to the high load by a non rigorous but standard replica computation argument
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.