We introduce a bipartite, diluted and frustrated, network as a sparse restricted Boltzmann machine and we show its thermodynamical equivalence to an associative working memory able to retrieve several patterns in parallel without falling into spurious states typical of classical neural networks. We focus on systems processing in parallel a finite (up to logarithmic growth in the volume) amount of patterns, mirroring the low-level storage of standard Amit-Gutfreund-Sompolinsky theory. Results obtained through statistical mechanics, the signal-to-noise technique, and Monte Carlo simulations are overall in perfect agreement and carry interesting biological insights. Indeed, these associative networks pave new perspectives in the understanding of multitasking features expressed by complex systems, e.g., neural and immune networks.
We consider a simple random walk on the T-fractal and we calculate the exact mean time taug to first reach the central node i0. The mean is performed over the set of possible walks from a given origin and over the set of starting points uniformly distributed throughout the sites of the graph, except i0. By means of analytic techniques based on decimation procedures, we find the explicit expression for taug as a function of the generation g and of the volume V of the underlying fractal. Our results agree with the asymptotic ones already known for diffusion on the T-fractal and, more generally, they are consistent with the standard laws describing diffusion on low-dimensional structures.
Abstract. Pattern-diluted associative networks were introduced recently as models for the immune system, with nodes representing T-lymphocytes and stored patterns representing signalling protocols between T-and B-lymphocytes. It was shown earlier that in the regime of extreme pattern dilution, a system with N T Tlymphocytes can manage a number N B = O(N δ T ) of B-lymphocytes simultaneously, with δ < 1. Here we study this model in the extensive load regime N B = αN T , with also a high degree of pattern dilution, in agreement with immunological findings. We use graph theory and statistical mechanical analysis based on replica methods to show that in the finite-connectivity regime, where each T-lymphocyte interacts with a finite number of B-lymphocytes as N T → ∞, the T-lymphocytes can coordinate effective immune responses to an extensive number of distinct antigen invasions in parallel. As α increases, the system eventually undergoes a second order transition to a phase with clonal cross-talk interference, where the system's performance degrades gracefully. Mathematically, the model is equivalent to a spin system on a finitely connected graph with many short loops, so one would expect the available analytical methods, which all assume locally tree-like graphs, to fail. Yet it turns out to be solvable. Our results are supported by numerical simulations.
We study continuous-time quantum walks mimicking the quantum search based on Grover's procedure. This allows us to consider structures, that is, databases, with arbitrary topological arrangements of their entries. We show that the topological structure of the database plays a crucial role by analyzing, both analytically and numerically, the transition from the ground to the first excited state of the Hamiltonian associated with different (fractal) structures. Additionally, we use the probability of successfully finding a specific target as another indicator of the importance of the topological structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.