Despite an apparently silent imaging, some patients with mild traumatic brain injury (TBI) experience cognitive dysfunctions, which may persist chronically. Brain changes responsible for these dysfunctions are unclear and commonly overlooked. It is thus crucial to increase our understanding of the mechanisms linking the initial event to the functional deficits, and to provide objective evidence of brain tissue alterations underpinning these deficits. We first set up a murine model of closed-head controlled cortical impact, which provoked persistent cognitive and sensorimotor deficits, despite no evidence of brain contusion or bleeding on MRI, thus recapitulating features of mild TBI. Molecular MRI for P-selectin, a key adhesion molecule, detected no sign of cerebrovascular inflammation after mild TBI, as confirmed by immunostainings. By contrast, in vivo PET imaging with the TSPO ligand [18F]DPA-714 demonstrated persisting signs of neuroinflammation in the ipsilateral cortex and hippocampus after mild TBI. Interestingly, immunohistochemical analyses confirmed these spatio-temporal profiles, showing a robust parenchymal astrogliosis and microgliosis, at least up to 3 weeks post-injury in both the cortex and hippocampus. In conclusion, we show that even one single mild TBI induces long-term behavioural deficits, associated with a persistent neuro-inflammatory status that can be detected by PET imaging.
Chronic hypertension is a major risk factor for the development of neurodegenerative disease, yet the etiology of hypertension-driven neurodegeneration remains poorly understood. Forming a unique interface between the systemic circulation and the brain, the blood-cerebrospinal fluid barrier (BCSFB) at the choroid plexus (CP) has been proposed as a key site of vulnerability to hypertension that may initiate downstream neurodegenerative processes. However, our ability to understand BCSFB’s role in pathological processes has, to date, been restricted by a lack of non-invasive functional measurement techniques. In this work, we apply a novel Blood-Cerebrospinal Fluid Barrier Arterial Spin Labeling (BCSFB-ASL) Magnetic resonance imaging (MRI) approach with the aim of detecting possible derangement of BCSFB function in the Spontaneous Hypertensive Rat (SHR) model using a non-invasive, translational technique. SHRs displayed a 36% reduction in BCSFB-mediated labeled arterial water delivery into ventricular cerebrospinal fluid (CSF), relative to normotensive controls, indicative of down-regulated choroid plexus function. This was concomitant with additional changes in brain fluid biomarkers, namely ventriculomegaly and changes in CSF composition, as measured by T1 lengthening. However, cortical cerebral blood flow (CBF) measurements, an imaging biomarker of cerebrovascular health, revealed no measurable change between the groups. Here, we provide the first demonstration of BCSFB-ASL in the rat brain, enabling non-invasive assessment of BCSFB function in healthy and hypertensive rats. Our data highlights the potential for BCSFB-ASL to serve as a sensitive early biomarker for hypertension-driven neurodegeneration, in addition to investigating the mechanisms relating hypertension to neurodegenerative outcomes.
Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies and 10–20% of the acquired forms. The latency between traumatic brain injury (TBI) and epilepsy onset in high-risk patients offers a therapeutic window for intervention to prevent or improve the disease course. However, progress towards effective treatments has been hampered by the lack of sensitive prognostic biomarkers of PTE, and of therapeutic targets. There is therefore a pressing clinical need for preclinical PTE models suitable for biomarker discovery and drug testing. We characterized in-depth a model of severe TBI induced by controlled cortical impact evolving into PTE in CD1 adult male mice. To identify sensitive measures predictive of PTE development and severity, TBI mice were longitudinally monitored by video-electrocorticography (ECoG), examined by MRI, and tested for sensorimotor and cognitive deficits and locomotor activity. At the end of the video-ECoG recording mice were killed for brain histological analysis. PTE occurred in 58% of mice with frequent motor seizures (one seizure every other day), as determined up to 5 months post-TBI. The weight loss of PTE mice in 1 week after TBI correlated with the number of spontaneous seizures at 5 months. Moreover, the recovery rate of the sensorimotor deficit detected by the SNAP test before the predicted time of epilepsy onset was significantly lower in PTE mice than in those without epilepsy. Neuroscore, beam walk and cognitive deficit were similar in all TBI mice. The increase in the contusion volume, the volume of forebrain regions contralateral to the lesioned hemisphere and white matter changes over time assessed by MRI were similar in PTE and no-PTE mice. However, brain histology showed a more pronounced neuronal cell loss in the cortex and hippocampus contralateral to the injured hemisphere in PTE than in no-PTE mice. The extensive functional and neuropathological characterization of this TBI model, provides a tool to identify sensitive measures of epilepsy development and severity clinically useful for increasing PTE prediction in high-risk TBI patients. The high PTE incidence and spontaneous seizures frequency in mice provide an ideal model for biomarker discovery and for testing new drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.