Magnesium-based batteries represent one of the successfully emerging electrochemical energy storage chemistries, mainly due to the high theoretical volumetric capacity of metallic magnesium (i.e., 3833 mAh cm−3 vs. 2046 mAh cm−3 for lithium), its low reduction potential (−2.37 V vs. SHE), abundance in the Earth’s crust (104 times higher than that of lithium) and dendrite-free behaviour when used as an anode during cycling. However, Mg deposition and dissolution processes in polar organic electrolytes lead to the formation of a passivation film bearing an insulating effect towards Mg2+ ions. Several strategies to overcome this drawback have been recently proposed, keeping as a main goal that of reducing the formation of such passivation layers and improving the magnesium-related kinetics. This manuscript offers a literature analysis on this topic, starting with a rapid overview on magnesium batteries as a feasible strategy for storing electricity coming from renewables, and then addressing the most relevant outcomes in the field of anodic materials (i.e., metallic magnesium, bismuth-, titanium- and tin-based electrodes, biphasic alloys, nanostructured metal oxides, boron clusters, graphene-based electrodes, etc.).
In the production of commercial Li-ion batteries, the active materials slurries are generally prepared using polyvinylidene fluoride (PVdF) as binder because of its good adhesion properties and electrochemical stability. Unfortunately, there are some disadvantages related to the use of PVdF: the most important is the use of toxic and environmentally unfriendly solvents, such as N-methyl-pyrrolidone (NMP), and the second is the high costs. In the light of these considerations, it seemed straightforward to investigate the suitability of some water-soluble, inexpensive, and eco-friendly materials to test as alternative binders (sodium alginate, chitosan tragacanth gum, gelatin). The rheological properties of these materials have been investigated in addition to the electrochemical characterization. Furthermore, graphite electrodes with PVdF, carboxymethyl cellulose (CMC), and styrene-butadiene rubber (SBR) binders have been considered for sake of comparison. We found that some of these water-soluble binders, besides good electrochemical performances, showed a high adhesion to the current collector and a good electrochemical stability under the experimental conditions employed, which makes them interesting for the next generation of Li-ion batteries.
Hindered urea bonds are introduced as self-healing units in a polymer electrolyte for Li-metal batteries. Differently from standard commercial separators, the poly(urea-urethane) system works for hundreds of cycles after several damage/healing steps.
Li-O2 batteries represent a promising rechargeable battery candidate to answer the energy challenges our world is facing, thanks to their ultrahigh theoretical energy density. However, the poor cycling stability of the Li-O2 system and, overall, important safety issues due to the formation of Li dendrites, combined with the use of organic liquid electrolytes and O2 cross-over, inhibit their practical applications. As a solution to these various issues, we propose a composite gel polymer electrolyte consisting of a highly cross-linked polymer matrix, containing a dextrin-based nanosponge and activated with a liquid electrolyte. The polymer matrix, easily obtained by thermally activated one pot free radical polymerization in bulk, allows to limit dendrite nucleation and growth thanks to its cross-linked structure. At the same time, the nanosponge limits the O2 cross-over and avoids the formation of crystalline domains in the polymer matrix, which, combined with the liquid electrolyte, allows a good ionic conductivity at room temperature. Such a composite gel polymer electrolyte, tested in a cell containing Li metal as anode and a simple commercial gas diffusion layer, without any catalyst, as cathode demonstrates a full capacity of 5.05 mAh cm−2 as well as improved reversibility upon cycling, compared to a cell containing liquid electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.