Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-β-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-β-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-β-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-β-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins.
Octopus vulgaris uses visual information to determine the location of its arms. Curr. Biol. 21, 460-462. 50. Collier-Baker, E., and Suddendorf, T. (2006). Do chimpanzees (Pan Troglodytes) and 2-year-old children (Homo Sapiens) understand double invisible displacement?
Estimates of last male sperm precedence (P 2 ) are often used to infer mechanisms of sperm competition, a form of post-copulatory sexual selection. However, high levels of mating failure (i.e. copulations resulting in no offspring) in a population can lead to misinterpretations of sperm competition mechanisms. Through simulations, García-González (2004) illustrated how mating failure could cause bimodal distributions of paternity with peaks at P 2 = 0 and 1, under a random sperm mixing mechanism. Here, we demonstrate this effect empirically with the seed bug Lygaeus simulans, a species known to exhibit high levels of mating failure (40-60%), using a morphological marker to estimate paternity. Contrary to previous findings in a sister species, we did not find strong evidence for last male sperm precedence. There was a tendency towards last male precedence (P 2 = 0.58) but within the expected range for random sperm mixing. Instead, P 2 was highly variable, with a bimodal distribution, as predicted by García-González (2004). After taking mating failure into account, the strongest driver of paternity outcome was copulation duration. Furthermore, we found evidence that mating failure could partly be a female-associated trait. Some doubly-mated females were more likely to produce no offspring or produce offspring from two different sires than expected by chance. Therefore, some females are more prone to experience mating failure than others, a result that mirrors an earlier result in male L. simulans. Our results confirm that mating failure needs to be considered when interrogating mechanisms of post-copulatory sexual selection. Significance statementMating failure arises when animals fail to produce offspring across their lifetime. This may be due to a failure to find a mate or a failure to produce offspring after one or more apparently successful matings. Sperm competition is when ejaculates of rival males compete to fertilize a female's eggs. Estimates of second male paternity (P 2 ) are often used to infer mechanisms of sperm competition (i.e. which male "wins" and how). However, García-González (2004) suggested that high levels of mating failure can skew paternity (i.e. give spuriously high/low levels of P 2 ) and lead to misinterpretations of these mechanisms. We carried out sperm competition experiments on Lygaeus simulans seed bugs using a morphological marker to estimate paternity. We show empirically that mating failure does skew patterns of paternity, causing a bimodal distribution of P 2 . Therefore, by disrupting patterns of sperm competition, mating failure influences both the action of post-copulatory sexual selection and also our understanding of the mechanisms of sperm competition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.