Evangelista, AL, De Souza, EO, Moreira, DCB, Alonso, AC, Teixeira, CVLS, Wadhi, T, Rauch, J, Bocalini, DS, Pereira, PEDA, and Greve, JMDA. Interset stretching vs. traditional strength training: effects on muscle strength and size in untrained individuals. J Strength Cond Res 33(7S): S159–S166, 2019—This study compared the effects of 8 weeks of traditional strength training (TST) and interset stretching (ISS) combined with TST on muscular adaptations. Twenty-nine sedentary, healthy adults were randomly assigned to either the TST (n = 17; 28.0 ± 6.4 years) or ISS (n = 12; 26.8 ± 6.1 years) group. Both groups performed 6 strength exercises encompassing the whole body (bench press, elbow extension, seated rows, biceps curl, knee extension, and knee flexion) performing 4 sets of 8–12 repetition maximum (RM) with a 90-second rest between sets. However, the ISS group performed static passive stretching, at maximum amplitude, for 30 seconds between sets. Both groups performed training sessions twice a week on nonconsecutive days. Muscle strength (i.e., 1RM) and hypertrophy (i.e., muscle thickness [MT] by ultrasonography) were measured at pre-test and after 8 weeks of training. Both groups increased 1RM bench press (p ≤ 0.0001): ISS (23.4%, CIdiff: 4.3 kg–11.1 kg) and TST (22.2%, CIdiff: 5.2 kg–10.9 kg) and 1RM knee extension (p ≤ 0.0001): ISS (25.5%, CIdiff: 5.6 kg–15.0 kg) and TST (20.6%, CIdiff: 4.4 kg–12.3 kg). Both groups increased MT of biceps brachii (BIMT), triceps brachii (TRMT), and rectus femoris (RFMT) (p ≤ 0.0001). BIMT: ISS (7.2%, CIdiff: 1.14–3.5 mm) and TST (4.7%, CIdiff: 0.5–2.5 mm), TRMT: ISS (12.3%, CIdiff: 1.1–4.4 mm) and TST (7.1%, CIdiff: 0.3–3.1 mm), and RFMT: ISS (12.4%, CIdiff: 1.1–2.9 mm) and TST (9.1%, CIdiff: 0.7–2.2 mm). For vastus lateralis muscle thickness (VLMT) and sum of the 4 muscle thickness sites (ΣMT), there was a significant group by time interaction (p ≤ 0.02) in which ISS increased VLMT and ΣMT to a greater extent than TST. Vastus lateralis muscle thickness: ISS (17.0%, CIdiff: 1.5–3.1 mm) and TST (7.3%, CIdiff: 0.7–2.1 mm), and ΣMT: ISS (10.5%, CIdiff: 6.5–9.0 mm) and TST (6.7%, CIdiff: 3.9–8.3 mm). Although our findings might suggest a benefit of adding ISS into TST for optimizing muscle hypertrophy, our data are not sufficient enough to conclude that ISS is superior to TST for inducing muscle hypertrophic adaptations. More studies are warranted to elucidate the effects of ISS compared with TST protocols on skeletal muscle. However, our findings support that adding ISS to regular TST regimens does not compromise muscular adaptations during the early phase of training (<8 weeks) in untrained individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.