Homocysteine is a sulfur-containing amino acid derived from methionine metabolism. When plasma homocysteine levels exceed 10-15 μM, there is a condition known as hyperhomocysteinemia, which occur as a result of an inborn error of methionine metabolism or by non-genetic causes. Mild hyperhomocysteinemia is considered a risk factor for development of neurodegenerative diseases. The objective of the present study was to evaluate whether acetylsalicylic acid has neuroprotective role on the effect of homocysteine on inflammatory, oxidative/nitrative stress, and morphological parameters in cerebral cortex of rats subjected to chronic mild hyperhomocysteinemia. Wistar male rats received homocysteine (0.03 μmol/g of body weight) by subcutaneous injections twice a day and acetylsalicylic acid (25 mg/Kg of body weight) by intraperitoneal injections once a day from the 30th to the 60th postpartum day. Control rats received vehicle solution in the same volume. Results showed that rats subjected to chronic mild hyperhomocysteinemia significantly increased IL-1β, IL-6, and acetylcholinesterase activity and reduced nitrite levels. Homocysteine decreased catalase activity and immunocontent and superoxide dismutase activity, caused protein and DNA damage, and altered neurons ultrastructure. Acetylsalicylic acid totally prevented the effect of homocysteine on acetylcholinesterase activity and catalase activity and immunocontent, as well as the ultrastructural changes, and partially prevented alterations on IL-1β levels, superoxide dismutase activity, sulfhydryl content, and comet assay. Acetylsalicylic acid per se increased DNA damage index. In summary, our findings showed that chronic chemically induced model of mild hyperhomocysteinemia altered some parameters and acetylsalicylic acid administration seemed to be neuroprotective, at least in part, on neurotoxicity of homocysteine.
Elevated levels of methionine in blood characterize the hypermethioninemia, which may have genetic or non‐genetic origin, as for example from high protein diet. Born rats from hypermethioninemic mothers presented cerebral oxidative stress, inhibition of Na+,K+‐ATPase, memory deficit and ultrastructure cerebral changes. Melatonin is a hormone involved in circadian rhythm and has antioxidant effects. The aim of this study was to verify the possible neuroprotective effects of melatonin administration in hypermethioninemic pregnant rats on damage to biomolecules (Na+,K+‐ATPase, sulfhydryl content and DNA damage index) and behavior (open field, novel object recognition and water maze tasks), as well as its effect on cells morphology by electron microscopy in offspring. Wistar female rats received methionine (2.68 μmol/g body weight) and/or melatonin (10 mg/kg body weight) by subcutaneous injections during entire pregnancy. Control rats received saline. Biochemical analyzes were performed at 21 and 30 days of life of offspring and behavioral analyzes were performed only at 30 days of age in male pups. Results showed that gestational hypermethioninemia diminished Na+,K+‐ATPase activity and sulfhydryl content and increased DNA damage at 21 and 30 days of life. Melatonin was able to totally prevent Na+,K+‐ATPase activity alteration at 21 days and partially prevent its alteration at 30 days of rats life. Melatonin was unable in to prevent sulfhydryl and DNA damage at two ages. It also improved DNA damage, but not at level of saline animals (controls). Regarding to behavioral tests, data showed that pups exposed to gestational hypermethioninemia decreased reference memory in water maze, spent more time to the center of the open field and did not differentiate the objects in the recognition test. Melatonin was able to prevent the deficit in novel object recognition task. Electron microscopy revealed ultrastructure alterations in neurons of hypermethioninemic at both ages of offspring, whose were prevented by melatonin. These findings suggest that melatonin may be a good neuroprotective to minimize the harmful effects of gestational hypermethioninemia on offspring.
The aim of this study was to verify the effects of ovariectomy (OVX) and/or vitamin D supplementation (VIT D) on inflammatory and cholinergic parameters in hippocampus, as well as on serum estradiol and VIT D levels of rats. Ninety-day-old female Wistar rats were randomly divided into four groups: SHAM, OVX, VIT D or OVX + VIT D. Thirty days after OVX, VIT D (500 IU/kg/day) was supplemented by gavage, for 30 days. Approximately 12 h after the last VIT D administration, rats were euthanized and hippocampus and serum were obtained for further analyses. Results showed that OVX rats presented a decrease in estradiol levels when compared to control (SHAM). There was an increase in VIT D levels in the groups submitted to VIT D supplementation. OVX increased the immunocontent of nuclear p-NF-κB/p65, TNF-α and IL-6 levels. VIT D partially reversed the increase in p-NF-κB/p65 immunocontent and IL-6 levels. Regarding cholinergic system, OVX caused an increase in acetylcholinesterase activity without changing acetylcholinesterase and choline acetyltransferase immunocontents. VIT D did not reverse the increase in acetylcholinesterase activity caused by OVX. These results demonstrate that OVX alters inflammatory and cholinergic parameters and that VIT D supplementation, at the dose used, partially reversed the increase in immunocontent of p-NF-Kb/p65 and IL-6 levels, but it was not able to reverse other parameters studied. Our findings may help in the understanding of the brain changes that occurs in post menopause period and open perspectives for futures research involving VIT D therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.