An ion mobility spectrometer (IMS) probe system for real-time, subsurface soil-gas sampling applications is presented. The system includes an IMS and supporting electronics encased in a 51 mm diameter stainless steel probe housing. The IMS was challenged in the laboratory with 2,6-di-tert-butylpyridine (DtBP) and tetrachloroethylene (PCE) in zero air yielding reduced ion mobility constants (K o ) values of 1.42 cm 2 /Vs (n=3) and 1.79±0.01 cm 2 /Vs (n=3), respectively. A resolving power of 38 and 31 was obtained for DtBP and PCE, respectively. The system was deployed at a PCE-contaminated site to demonstrate its performance under field conditions. PCE was detected in the vapor samples as evidenced by peaks with a K o value of 1.80± 0.01 cm 2 /Vs for two measurements that were taken 6 min apart. The presence of PCE at the contaminated site was confirmed by GC-MS analysis of a gas sample at an EPAcertified laboratory, suggesting that this IMS system can be used to detect PCE under field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.