Receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member LAR act as transmembrane receptors that mediate growth inhibition of chondroitin sulfate proteoglycans (CSPGs). Inhibition of either receptor increases axon growth into and beyond scar tissues after CNS injury. However, it is unclear why neurons express two similar CSPG receptors, nor whether they use the same or different intracellular pathways. We have now studied the signaling pathways of these two receptors using N2A cells and primary neurons derived from knockout mice. We demonstrate that both receptors share certain signaling pathways (RhoA, Akt and Erk), but also use distinct signals to mediate CSPG actions. Activation of PTPσ by CSPGs selectively inactivated CRMP2, APC, S6 kinase and CREB. By contrast LAR activation inactivated PKCζ, cofilin and LKB1. For the first time, we propose a model of the signaling pathways downstream of these two CSPG receptors. We also demonstrate that deleting both receptors exhibits additive enhancement of axon growth in adult neuronal cultures in vitro. Our findings elucidate the novel downstream pathways of CSPGs and suggest potential synergy of blocking their two PTP receptors.
Diabetes mellitus is characterized by chronic hyperglycemia and its diverse complications. Hyperglycemia is associated with inflammatory responses in different organs and diabetic patients have a higher risk of developing neurodegenerative disorders. Methylglyoxal is a reactive advanced glycation end product precursor that accumulates in diabetic patients. It induces various stress responses in the central nervous system and causes neuronal dysfunction. Astrocytes are actively involved in maintaining neuronal homeostasis and possibly play a role in protecting the brain against neurodegeneration. However it is not clear whether methylglyoxal exerts any adverse effects towards these astrocytes. In the present study we investigated the effects of methylglyoxal in astrocytic cultures and hippocampi of experimental animals. The cells from the astrocytic line DITNC1 were treated with methylglyoxal for 1 to 24 h. For the in vivo model, 3 months old C57BL/6 mice were treated with methylglyoxal solution for 6 weeks by intraperitoneal injection. Following the treatment, both astrocytes and hippocampi were harvested for MTT assay, Western blot and real time PCR analyses. We found that methylglyoxal induced astrogliosis in DITNC1 astrocytic cultures and C57BL/6 mice. Further, activation of the pro-inflammatory JNK signaling pathway and its downstream effectors c-Jun were observed. Furthermore, increased gene expression of pro-inflammatory cytokines and astrocytic markers were observed from real time PCR analyses. In addition, inhibition of JNK activities resulted in down-regulation of TNF-α gene expression in methylglyoxal treated astrocytes. Our results suggest that methylglyoxal may contribute to the progression of diabetes related neurodegeneration through JNK pathway activation in astrocytes and the subsequent neuroinflammatory responses in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.