Animals may be responsible for an array of potentially lethal injuries. Blunt force injuries characteristically involve larger animals such as cattle or horses that may kick, crush, or trample a victim causing head and facial injuries. Farm workers in particular are at high risk of lethal injuries involving the head and torso. Significant blunt trauma may be found in vehicle occupants after collisions with large animals such as camels or moose. Rarely, zookeepers may be crushed by particularly massive animals such as elephants. Sharp force injuries usually involve carnivore bites, most often from dogs with a "hole and tear" pattern of wounding. Injuries from animals such as alligators and sharks may have a significant component of crushing. Incised wounds may result in death from exsanguination and air embolism. On occasion, blunt or sharp trauma from animal activity may be confused with postmortem damage or with inflicted injury from an assault.
In addition to blunt and sharp trauma, animal-related fatalities may result from envenomation, poisoning, anaphylaxis, asphyxiation, and sepsis. Although the majority of envenomation deaths are caused by hornets, bees, and wasps, the mechanism of death is most often anaphylaxis. Envenomation resulting from the injection of a poison or toxin into a victim occurs with snakes, spiders, and scorpions on land. Marine animal envenomation may result from stings and bites from jellyfish, octopus, stonefish, cone fish, stingrays, and sea snakes. At autopsy, the findings may be extremely subtle, and so a history of exposure is required. Poisoning may also occur from ingesting certain fish, with three main forms of neurotoxin poisoning involving ciguatera, tetrodotoxin ingestion, and paralytic shellfish poisoning. Asphyxiation may follow upper airway occlusion or neck/chest compression by animals, and sepsis may follow bites. Autopsy analysis of cases requires extensive toxinological, toxicological, and biochemical analyses of body fluids.
Much effort is currently being placed into developing new blood tests for cancer diagnosis in the hope of moving cancer diagnosis earlier and by less invasive means than current techniques, e.g., biopsy. Current methods are expected to diagnose and begin treatment of cancer within 62 days of patient presentation, though due to high volume and pressures within the NHS in the UK any technique that can reduce time to diagnosis would allow reduction in the time to treat for patients. The use of vibrational spectroscopy, notably infrared (IR) spectroscopy, has been under investigation for many years with varying success. This technique holds promise as is would combine a generally well accepted test (a blood test) with analysis that is reagent free and cheap to run. It has been demonstrated that, when asked simple clinical questions (i.e., cancer vs. no cancer), results from spectroscopic studies are promising. However, in order to become a clinically useful tool, it is important that the test differentiates a variety of cancer types from healthy patients. This study has analysed plasma samples with attenuated total reflection Fourier-transform IR spectroscopy (ATR-FTIR), to establish if the technique is able to distinguish normal from primary or metastatic brain tumours. We have shown that when asked specific questions, i.e., high-grade glioma vs. low-grade glioma, the results show a significantly high accuracy (100%). Crucially, when combined with meningiomas and metastatic lesions, the accuracy remains high (88-100%) with only minimal overlap between the two metastatic adenocarcinoma groups. Therefore in a clinical setting, this novel technique demonstrates potential benefit when used in conjuction with existing diagnostic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.