a b s t r a c tPhospholipase associated neurodegeneration (PLAN) comprises a heterogeneous group of autosomal recessive neurological disorders caused by mutations in the PLA2G6 gene. Direct gene sequencing detects 85% mutations in infantile neuroaxonal dystrophy. We report the novel use of multiplex ligationdependent probe amplification (MLPA) analysis to detect novel PLA2G6 duplications and deletions. The identification of such copy number variants (CNVs) expands the PLAN mutation spectrum and may account for up to 12.5% of PLA2G6 mutations. MLPA should thus be employed to detect CNVs of PLA2G6 in patients who show clinical features of PLAN but in whom both disease-causing mutations cannot be identified on routine sequencing.
Approximately 25 % of mismatch repair (MMR) variants are exonic nucleotide substitutions. Some result in the substitution of one amino acid for another in the protein sequence, so-called missense variants, while others are silent. The interpretation of the effect of missense and silent variants as deleterious or neutral is challenging. Pre-symptomatic testing for clinical use is not recommended for relatives of individuals with variants classified as 'of uncertain significance'. These relatives, including non-carriers, are considered at high-risk as long as the contribution of the variant to disease causation cannot be determined. This results in continuing anxiety, and the application of potentially unnecessary screening and prophylactic interventions. We encountered a large Irish Lynch syndrome kindred that carries the c.544A>G (p.Arg182Gly) alteration in the MLH1 gene and we undertook to study the variant. The clinical significance of the variant remains unresolved in the literature. Data are presented on cancer incidence within five kindreds with the same germline missense variant in the MLH1 MMR gene. Extensive testing of relevant family members in one kindred, a review of the literature, review of online MMR mutation databases and use of in silico phenotype prediction tools were undertaken to study the significance of this variant. Clinical, histological, immunohistochemical and molecular evidence from these families and other independent clinical and scientific evidence indicates that the MLH1 p.Arg182Gly (c.544A>G) change causes Lynch syndrome and supports reclassification of the variant as pathogenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.