The application of urea-based selective catalytic reduction products (i.e., Urea-SCR) provides a reduction of NOx and, therefore, minimizes pollution emissions from vehicles fueled by diesel. Such products can be easily found in the market; however, they are often susceptible to adulteration, mainly in terms of the urea content and dilution with non-mineralized water. In this study, we propose a simple, low-cost, disposable, and straightforward paper-based microfluidic device for the quality-control of Urea-SCR products for the first time by quantifying urea and water hardness simultaneously via colorimetric reactions using a small volume of sample. 4-(dimethylamino)benzaldehyde and Eriochrome T were used as colorimetric indicators for urea and water hardness determination, respectively. Each reagent (1.5 µL) was combined with 6 µL of sample for analysis, contributing to an expressive reduction of waste generation. Digital images of the µPAD were obtained, and linear relations between color intensity and urea and Ca2+ and Mg2+ concentrations in the range of 0.2 to 1.0% and 0.1 to 3.5 mmol L−1 were obtained with a correlation coefficient higher than 0.99. Recovery experiments were employed to evaluate the accuracy of the methodology, revealing suitable values between 91.5 and 115%. Brazilian Urea-SCR samples were acquired from different distributors and submitted to the proposed procedure to evaluate its applicability. The application of microfluidic paper-based devices with colorimetric reactions enables the quality control of Urea-SCR products with high accuracy, portability, low consumption of reagents, and no generation of toxic residues; thereby contributing to the green analytical chemistry field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.