ObjectiveTo identify coinhibitory immune pathways important in the brain, we hypothesized that comparison of T cells in lesions from patients with MS with tumor-infiltrating T cells (TILs) from patients with glioblastoma multiforme may reveal novel targets for immunotherapy.MethodsWe collected fresh surgical resections and matched blood from patients with glioblastoma, blood and unmatched postmortem CNS tissue from patients with MS, and blood from healthy donors. The expression of TIGIT, CD226, and their shared ligand CD155 as well as PD-1 and PDL1 was assessed by both immunohistochemistry and flow cytometry.ResultsWe found that TIGIT was highly expressed on glioblastoma-infiltrating T cells, but was near-absent from MS lesions. Conversely, lymphocytic expression of PD-1/PD-L1 was comparable between the 2 diseases. Moreover, TIGIT was significantly upregulated in circulating lymphocytes of patients with glioblastoma compared with healthy controls, suggesting recirculation of TILs. Expression of CD226 was also increased in glioblastoma, but this costimulatory receptor was expressed alongside TIGIT in the majority of tumor-infiltrating T cells, suggesting functional counteraction.ConclusionsThe opposite patterns of TIGIT expression in the CNS between MS and glioblastoma reflects the divergent features of the immune response in these 2 CNS diseases. These data raise the possibility that anti-TIGIT therapy may be beneficial for patients with glioblastoma.
Phthalate exposure has recently been associated with behavioral actions that are linked to its endocrine-disrupting properties. The purpose of this study was to investigate the molecular, anatomical, and behavioral effects of indirect perinatal benzyl butyl phthalate (BBP) exposure in offspring of BBP-treated pregnant dams. In two separate experiments, we administered BBP (10.0 μg/ml) on food pellets to pregnant dams and examined the offspring. The first experiment revealed reproductive anatomical abnormalities linked to BBP's endocrine-disrupting properties, whereas histological analysis revealed preserved hippocampal neuronal migration. The second experiment demonstrated learning and memory impairments accompanied by molecular abnormalities in multiple brain regions. Offspring from BBP-treated dams had altered levels of several proteins important for neuronal circuitry formation, tissue development, and maturation. We suggest that BBP administration disrupts normal learning and that these effects could be related to alterations in brain development and result in a phenotype similar to that observed in neurodevelopmental disorders.
Spatial segregation of proteins to neuronal axons arises in part from local translation of mRNAs that are first transported into axons in ribonucleoprotein particles (RNPs), complexes containing mRNAs and RNA binding proteins. Understanding the importance of local translation for a particular circuit requires not only identifying axonal RNPs and their mRNA cargoes, but also whether these RNPs are broadly conserved or restricted to only a few species. Fragile X granules (FXGs) are axonal RNPs containing the fragile X related family of RNA binding proteins along with ribosomes and specific mRNAs. FXGs were previously identified in mouse, rat, and human brains in a conserved subset of neuronal circuits but with species-dependent developmental profiles. Here, we asked whether FXGs are a broadly conserved feature of the mammalian brain and sought to better understand the species-dependent developmental expression pattern. We found FXGs in a conserved subset of neurons and circuits in the brains of every examined species that together include mammalian taxa separated by up to 160 million years of divergent evolution. A developmental analysis of rodents revealed that FXG expression in frontal cortex and olfactory bulb followed consistent patterns in all species examined. In contrast, FXGs in hippocampal mossy fibers increased in abundance across development for most species but decreased across development in guinea pigs and members of the Mus genus, animals that navigate particularly small home ranges in the wild. The widespread conservation of FXGs suggests that axonal translation is an ancient, conserved mechanism for regulating the proteome of mammalian axons. K E Y W O R D S axonal translation, local protein synthesis, RNA binding proteins, RRID AB_10805421, RRID AB_2278530, RRID AB_2737297, RRID AB_528262
To identify co-inhibitory immune pathways important in the brain, we hypothesized that comparison of T cells in lesions from patients with MS with tumor infiltrating T cells (TILs) from patients with GBM may reveal novel targets for immunotherapy. Focusing on PD-1 and TIGIT, we found that TIGIT and its ligand CD155 were highly expressed on GBM TILs but were nearabsent in MS lesions, while lymphocytic expression of PD-1/PDL-1 was comparable. TIGIT was also upregulated in peripheral lymphocytes in GBM, suggesting recirculation of TILs. These data raise the possibility that anti-TIGIT therapy may be beneficial for patients with glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.