Aggressive behaviours are among the most striking displayed by animals, and aggression strongly impacts fitness in many species. Aggression varies plastically in response to the social environment, but we lack direct tests of how aggression evolves in response to intra-sexual competition. We investigated how aggression in both sexes evolves in response to the competitive environment, using populations of Drosophila melanogaster that we experimentally evolved under female-biased, equal, and male-biased sex ratios. We found that after evolution in a female-biased environment—with less male competition for mates—males fought less often on food patches, although the total frequency and duration of aggressive behaviour did not change. In females, evolution in a female-biased environment—where female competition for resources is higher—resulted in more frequent aggressive interactions among mated females, along with a greater increase in post-mating aggression. These changes in female aggression could not be attributed solely to evolution either in females or in male stimulation of female aggression, suggesting that coevolved interactions between the sexes determine female post-mating aggression. We found evidence consistent with a positive genetic correlation for aggression between males and females, suggesting a shared genetic basis. This study demonstrates the experimental evolution of a behaviour strongly linked to fitness, and the potential for the social environment to shape the evolution of contest behaviours.
Aggressive interactions are costly, such that individuals should display modified aggression in response to environmental stress. Many organisms experience frequent periods of food deprivation, which can influence an individual's capacity and motivation to engage in aggression. However, because food deprivation can simultaneously decrease an individual's resource-holding potential and increase its valuation of food resources, its net impact on aggression is unclear. Here, we tested the influence of increasingly prolonged periods of adult food deprivation on intermale aggression in pairs of fruit flies, Drosophila melanogaster . We found that males displayed increased aggression following periods of food deprivation longer than a day. Increased aggression in food-deprived flies occurred despite their reduced mass. This result is probably explained by an increased attraction to food resources, as food deprivation increased male occupancy of central food patches, and food patch occupancy was positively associated with aggression. Our findings demonstrate that aggressive strategies in male D. melanogaster are influenced by nutritional experience, highlighting the need to consider past nutritional stresses to understand variation in aggression.
Aggressive behaviours occur throughout the animal kingdom and agonistic contests often govern access to resources. Nutrition experienced during development has the potential to influence aggressive behaviours in adults through effects on growth, energy budgets and an individual’s internal state. In particular, resource-poor developmental nutrition might decrease adult aggression by limiting growth and energy budgets, or alternatively might increase adult aggression by enhancing motivation to compete for resources. However, the direction of this relationship—and effects of developmental nutrition experienced by rivals—remains unknown in most species, limiting understanding of how early-life environments contribute to variation in aggression. We investigated these alternative hypotheses by assessing male-male aggression in adult fruit flies, Drosophila melanogaster, that developed on a low-, medium- or high-resource diet, manipulated via yeast content. We found that a low-resource developmental diet reduced the probability of aggressive lunges in adults, as well as threat displays against rivals that developed on a low-resource diet. These effects appeared to be independent of diet-related differences in body mass. Males performed relatively more aggression on a central food patch when facing rivals of a low-resource diet, suggesting that developmental diet affects aggressive interactions through social effects in addition to individual effects. Our finding that resource-poor developmental diets reduce male-male aggression in D. melanogaster is consistent with the idea that resource budgets mediate aggression and in a mass-independent manner. Our study improves understanding of the links between nutrition and aggression.Significance statementEarly-life nutrition can influence social behaviours in adults. Aggression is a widespread social behaviour with important consequences for fitness. Using the fruit fly, Drosophila melanogaster, we show that a poor developmental diet reduces aspects of adult aggressive behaviour in males. Furthermore, males perform more aggression near food patches when facing rivals of poor nutrition. This suggests that early-life nutrition affects aggressive interactions through social effects in addition to individual effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.