Clostridium difficile is the most common cause of enteric disease and presents a major burden on healthcare systems globally due in part to the observed rapid rise in antibiotic resistance. The ability of C. difficile to form endospores is a key feature in the organism’s pathogenesis and transmission, and contributes greatly to its resilient nature. Endospores are highly resistant to disinfection, allowing them to persist on hospital surfaces. In order for the organism to cause disease, the spores must germinate and revert to a vegetative form. While spore germination in Bacillus spp. is well understood, very little is known about this process in Clostridia. Here we report the characterization of SleC (CD0551) from C. difficile 630. Bioinformatic analysis of SleC indicated a multi-domained protein possessing a peptidoglycan-binding (PGB) domain, a SpoIID/LytB domain and an undefined N-terminal region. We have confirmed that SleC is an exo-acting lytic transglycosylase with the catalytic activity localized to the N-terminal region. Additionally, we have shown that both the N-terminal catalytic domain and the C-terminal PGB domain require muramyl-δ-lactam for substrate binding. As with carbohydrate-binding modules from cellulases and xylanases, the PGB domain may be responsible for increasing the processivity of SleC by concentrating the enzyme at the surface of the substrate.
N-acetylglucosaminidases (GlcNAcases) play an important role in the remodeling and recycling of bacterial peptidoglycan. Inhibitors of bacterial GlcNAcases can serve as antibacterial agents and provide an opportunity for the development of new antibiotics. We report the synthesis of triazole derivatives of N-acetylglucosamine using a copper promoted azide-alkyne coupling reaction between 1-azido-N-acetylglucosamine and a small library of terminal alkynes prepared via the Ugi reaction. These compounds were evaluated for their ability to inhibit the growth of bacteria. Two compounds that show bacteriostatic activity against Bacillus were identified, with MIC values of approximately 60 μM in both cases. Bacillus subtilis cultured in the presence of sub-MIC amounts of the glycosyl triazole inhibitors exhibit an elongated phenotype characteristic of impaired cell division. This represents the first report of inhibitors of bacterial cell wall GlcNAcases that demonstrate inhibition of cell growth in whole cell assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.