Cells use both deterministic and stochastic mechanisms to generate cell–to-cell heterogeneity, which enables the population to better withstand environmental stress. Here we show that, within a clonal population of mycobacteria, there is significant deterministic heterogeneity in elongation rate that arises because mycobacteria grow in an unusual, unipolar fashion. Division of the asymmetrically growing mother cell gives rise to daughter cells that differ in elongation rate and size. Because the mycobacterial cell division cycle is governed by time not cell size, rapidly elongating cells do not divide more frequently than slowly elongating cells. Importantly, the physiologically distinct subpopulations of cells that arise through asymmetric growth and division are differentially susceptible to clinically important classes of antibiotics.
Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the lack of genetic assays for detecting their conversion to an aggregated prion conformation. Here we describe a bacteria-based genetic assay that distinguishes cells carrying a model yeast prion protein in its nonprion and prion forms. We then use this assay to investigate the prion-forming potential of single-stranded DNA-binding protein (SSB) ofCampylobacter hominis. Our findings indicate that SSB possesses a prion-forming domain that can transition between nonprion and prion conformations. Furthermore, we show that bacterial cells can propagate the prion form over 100 generations in a manner that depends on the disaggregase ClpB. The bacteria-based genetic tool we present may facilitate the investigation of prion-like phenomena in all domains of life.
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.
Bacteriophages represent an enormous reservoir of novel genes, many of which are unrelated to existing entries in public databases and cannot be assigned a predicted function. Characterization of these genes can provide important insights into the intricacies of phage–host interactions and may offer new strategies to manipulate bacterial growth and behavior. Overexpression is a useful tool in the study of gene-mediated effects, and we describe here the construction of a plasmid-based overexpression library of a complete set of genes for Waterfoul, a mycobacteriophage closely related to those infecting clinically important strains of Mycobacterium tuberculosis and/or Mycobacterium abscessus. The arrayed Waterfoul gene library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 32 Waterfoul gene products capable of inhibiting the growth of the host Mycobacterium smegmatis and providing a first look at the frequency and distribution of cytotoxic products encoded within a single mycobacteriophage genome. Several of these Waterfoul gene products were observed to confer potent anti-mycobacterial effects, making them interesting candidates for follow-up mechanistic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.