Constitutive activation of STAT3 is a common feature in many solid tumors including non-small cell lung carcinoma (NSCLC). While activation of STAT3 is commonly achieved by somatic mutations to JAK2 in hematologic malignancies, similar mutations are not often found in solid tumors. Previous work has instead suggested that STAT3 activation in solid tumors is more commonly induced by hyperactive growth factor receptors or autocrine cytokine signaling. The interplay between STAT3 activation and other well-characterized oncogenic “driver” mutations in NSCLC has not been fully characterized, though constitutive STAT3 activation has been proposed to play an important role in resistance to various small-molecule therapies that target these oncogenes. In this study we demonstrate that STAT3 is constitutively activated in human NSCLC samples and in a variety of NSCLC lines independent of activating KRAS or tyrosine kinase mutations. We further show that genetic or pharmacologic inhibition of the gp130/JAK2 signaling pathway disrupts activation of STAT3. Interestingly, treatment of NSCLC cells with the JAK1/2 inhibitor ruxolitinib has no effect on cell proliferation and viability in two-dimensional culture, but inhibits growth in soft agar and xenograft assays. These data demonstrate that JAK2/STAT3 signaling operates independent of known driver mutations in NSCLC and plays critical roles in tumor cell behavior that may not be effectively inhibited by drugs that selectively target these driver mutations.
Summary We have demonstrated the feasibility of an endoscopic ultrasound-guided injectable hydrogel separation technique using a cadaveric model to increase the space between the head of the pancreas and duodenum. Using modeling studies, we identified the minimum distance of this separation for optimal sparing of the duodenum, setting the foundation for future clinical trials using this technique to enable dose escalation with either stereotactic or intensity-modulated radiation therapy for patients with unresectable pancreatic cancer. Purpose We assessed the feasibility and theoretical dosimetric advantages of an injectable hydrogel to increase the space between the head of the pancreas (HOP) and duodenum in a human cadaveric model. Methods and Materials Using 3 human cadaveric specimens, an absorbable radiopaque hydrogel was injected between the HOP and duodenum by way of open laparotomy in 1 case and endoscopic ultrasound (EUS) guidance in 2 cases. The cadavers were subsequently imaged using computed tomography and dissected for histologic confirmation of hydrogel placement. The duodenal dose reduction and planning target volume (PTV) coverage were characterized using pre- and postspacer injection stereotactic body radiation therapy (SBRT) plans for the 2 cadavers with EUS-guided placement, the delivery method that appeared the most clinically desirable. Modeling studies were performed using 60 SBRT plans consisting of 10 previously treated patients with unresectable pancreatic cancer, each with 6 different HOP–duodenum separation distances. The duodenal volume receiving 15 Gy (V15), 20 Gy (V20), and 33 Gy (V33) was assessed for each iteration. Results In the 3 cadaveric studies, an average of 0.9 cm, 1.1 cm, and 0.9 cm HOP–duodenum separation was achieved. In the 2 EUS cases, the V20 decreased from 3.86 cm3 to 0.36 cm3 and 3.75 cm3 to 1.08 cm3 (treatment constraint <3 cm3), and the V15 decreased from 7.07 cm3 to 2.02 cm3 and 9.12 cm3 to 3.91 cm3 (treatment constraint <9 cm3). The PTV coverage improved or was comparable between the pre- and postinjection studies. Modeling studies demonstrated that a separation of 8 mm was sufficient to consistently reduce the V15, V20, and V33 to acceptable clinical constraints. Conclusions Currently, dose escalation has been limited owing to radiosensitive structures adjacent to the pancreas. We demonstrated the feasibility of hydrogel separation of the HOP and duodenum. Future studies will evaluate the safety and efficacy of this technique with the potential for more effective dose escalation using SBRT or intensity-modulated radiation therapy to improve the outcomes in patients with unresectable pancreatic cancer.
Although many laboratories currently use small molecule inhibitors of the BMP (Dorsomorphin/DM) and TGF-β (SB431542/SB) signaling pathways in protocols to generate midbrain dopamine (mDA) neurons from hES and hiPS cells, until now, these substances have not been thought to play a role in the mDA differentiation process. We report here that the transient inhibition of constitutive BMP (pSMADs 1, 5, 8) signaling, either alone or in combination with TGF-β inhibition (pSMADs 2, 3), is critically important in the upstream regulation of Wnt1-Lmx1a signaling in mDA progenitors. We postulate that the mechanism via which DM or DM/SB mediates these effects involves the up-regulation in SMAD-interacting protein 1 (SIP1), which results in greater repression of the Wnt antagonist, secreted frizzled related protein 1 (Sfrp1) in stem cells. Accordingly, knockdown of SIP1 reverses the inductive effects of DM/SB on mDA differentiation while Sfrp1 knockdown/inhibition mimics DM/SB. The rise in Wnt1-Lmx1a levels in SMAD-inhibited cultures is, however, accompanied by a reciprocal down-regulation in SHH-Foxa2 levels leading to the generation of few TH+ neurons that co-express Foxa2. If however, exogenous SHH/FGF8 is added along with SMAD inhibitors, equilibrium in these two important pathways is achieved such that authentic (Lmx1a+Foxa2+TH+) mDA neuron differentiation is promoted while alternate cell fates are suppressed in stem cell cultures. These data indicate that activators/inhibitors of BMP and TGF-β signaling play a critical upstream regulatory role in the mDA differentiation process in human pluripotent stem cells.
Background & aims-Many patients with pancreatic adenocarcinoma (PDAC) carry germline mutations associated with increased risk of cancer. It is not clear whether patients with intraductal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.