This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Seasonal migration is a behavioral response to predictable variation in environmental resources, risks, and conditions. In behaviorally plastic migrants, migration is a conditional strategy that depends, in part, on an individual’s informational state. The cognitive processes that underlie how facultative migrants understand and respond to their environment are not well understood. We compared perception of the present environment to memory and omniscience as competing cognitive mechanisms driving altitudinal migratory decisions in an endangered ungulate, the Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using 1,298 animal years of data, encompassing 460 unique individuals. We built a suite of statistical models to partition variation in fall migratory status explained by cognitive predictors, while controlling for non-cognitive drivers. To approximate attribute memory, we included lagged attributes of the range an individual experienced in the previous year. We quantified perception by limiting an individual’s knowledge of migratory range to the area and attributes visible from its summer range, prior to migrating. Our results show that perception, in addition to the migratory propensity of an individual’s social group, and an individual’s migratory history are the best predictors of migration in our system. Our findings suggest that short-distance altitudinal migration is, in part, a response to an individual’s perception of conditions on alterative winter range. In long-distance partial migrants, exploration of migratory decision-making has been limited, but it is unlikely that migratory decisions would be based on sensory cues from a remote target range. Differing cognitive mechanisms underpinning short and long-distance migratory decisions will result in differing levels of behavioral plasticity in response to global climate change and anthropogenic disturbance, with important implications for management and conservation of migratory species.
Fentanyl is a potent opioid used clinically as a pain medication and anesthetic but has recently seen a sharp rise as an illicit street drug. The potency of fentanyl means mucous membrane exposure to a small amount of the drug can expose first responders, including working canines, to accidental overdose. Naloxone, a fast-acting opioid antagonist administered intranasally (IN) or intramuscularly (IM) is currently carried by emergency personnel in the case of accidental exposure in both humans and canines. Despite the fact that law enforcement relies heavily on the olfactory abilities of canine officers, the effects of fentanyl exposure and subsequent reversal by naloxone on the olfactory performance of canines are unknown. In a block-randomized, crossover trial, we tested the effects of IN and IM naloxone on the abilities of working dogs to recognize the odor of Universal Detection Calibrant (UDC) prior to, and two, 24, and 48 h after intravenous fentanyl sedation and naloxone reversal. No detectable influence of fentanyl sedation and naloxone reversal on the dogs’ olfactory abilities was detected. We also found no difference in olfactory abilities when dogs received IN or IM naloxone. Together, results suggest no evidence that exposure to intravenous fentanyl followed by naloxone reversal impairs canine olfactory ability under these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.