Base metal, molecular catalysts for the fundamental process of conversion of protons and electrons to dihydrogen, remain a substantial synthetic goal related to a sustainable energy future. Here we report a diiron complex with bridging thiolates in the butterfly shape of the 2Fe2S core of the [FeFe]-hydrogenase active site but with nitrosyl rather than carbonyl or cyanide ligands. This binuclear [(NO)Fe(N 2 S 2 )Fe(NO) 2 ] þ complex maintains structural integrity in two redox levels; it consists of a (N 2 S 2 )Fe(NO) complex (N 2 S 2 ¼ N,N 0 -bis(2-mercaptoethyl)-1,4-diazacycloheptane) that serves as redox active metallodithiolato bidentate ligand to a redox active dinitrosyl iron unit, Fe(NO) 2 . Experimental and theoretical methods demonstrate the accommodation of redox levels in both components of the complex, each involving electronically versatile nitrosyl ligands. An interplay of orbital mixing between the Fe(NO) and Fe(NO) 2 sites and within the iron nitrosyl bonds in each moiety is revealed, accounting for the interactions that facilitate electron uptake, storage and proton reduction.
The instability of [Fe-Fe]-hydrogenase and its synthetic models under aerobic conditions is an inherent challenge in their development as practical H2 producing electrodes. The electrochemical oxygen reduction reaction of a series of synthetic model complexes of the [Fe-Fe] hydrogenase is investigated, and a dominant role of the bridgehead nitrogen in reducing the amount of partially reduced oxygen species (PROS), which is detrimental to the stability of these complexes, is discovered.
A series of diiron complexes developed as fundamental models of the two-iron subsite in the [FeFe]-hydrogenase enzyme active site show water-solubility by virtue of a sulfonate group incorporated into the -SCH(2)NRCH(2)S- dithiolate unit that bridges two Fe(I)(CO)(2)L moieties. The sulfanilic acid group imparts even greater water solubility in the presence of β-cyclodextrin, β-CyD, for which NMR studies suggest aryl-sulfonate inclusion into the cyclodextrin cavity as earlier demonstrated in the X-ray crystal structure of 1Na·2 β-CyD clathrate, where 1Na = Na(+)(μ-SCH(2)N(C(6)H(4)SO(3)(-))CH(2)S-)[Fe(CO)(3)](2), (Singleton et al., J. Am. Chem. Soc.2010, 132, 8870). Electrochemical analysis of the complexes for potential as electrocatalysts for proton reduction to H(2) finds the presence of β-CyD to diminish response, possibly reflecting inhibition of structural rearrangements required of the diiron unit for a facile catalytic cycle. Advantages of the aryl sulfonate approach include entry into a variety of water-soluble derivatives from the well-known (μ-SRS)[Fe(CO)(3)](2) parent biomimetic, that are stable in O(2)-free aqueous solutions.
Dynamic NMR (13C and 1H) studies of (μ-SCH2XCH2S)[Fe(CO)3]2 complexes (X = CR2, NR) were utilized to examine the fluxional processes that are important in the [FeFe]-hydrogenase active site models, where an open site for proton/hydrogen binding, achieved by configurational mobility of the Fe(CO)3 unit, is required for electrocatalysis of proton reduction. In order to interrogate the effects of fluxional mobility on electrochemical response to added acid, energy barriers for the CO site exchange in Fe(CO)3 rotors were determined for nitrogen- and carbon-based bridgehead complexes. The effect of the methyl substituent in both the NH/NCH3 and CH2/C(CH3)2 cases is to lower the Fe(CO)3 rotational activation barrier relative to the NH or CH2 analogues. Although the C(CH3)2 case has the lowest Fe(CO)3 rotational barrier, its performance as a proton reduction electrocatalyst is 2-fold less than that for the X = NR species, indicating the proton-directing effect of the pendent base on catalytic efficiency.
The discovery of a diiron organometallic site in nature within the diiron hydrogenase, [FeFe]-H2ase, active site has prompted revisits of the classic organometallic chemistry involving the Fe-Fe bond and bridging ligands, particularly of the (μ-SCH2XCH2S)[Fe(CO)3]2 and (μ-SCH2XCH2S)[Fe(CO)2L]2 (X = CH2, NH; L = PMe3, CN(-), and NHC's (NHC = N-heterocyclic carbene)), derived from CO/L exchange reactions. Through the synergy of synthetic chemistry and density functional theory computations, the regioselectivity of nucleophilic (PMe3 or CN(-)) and electrophilic (nitrosonium, NO(+)) ligand substitution on the diiron dithiolate framework of the (μ-pdt)[Fe(CO)2NHC][Fe(CO)3] complex (pdt = propanedithiolate) reveals the electron density shifts in the diiron core of such complexes that mimic the [FeFe]-H2ase active site. While CO substitution by PMe3, followed by reaction with NO(+), produces (μ-pdt)(μ-CO)[Fe(NHC)(NO)][Fe(CO)2PMe3](+), the alternate order of reagent addition produces the structural isomer (μ-pdt)[Fe(NHC)(NO)PMe3][Fe(CO)3](+), illustrating how the nucleophile and electrophile choose the electron-poor metal and the electron-rich metal, respectively. Theoretical explorations of simpler analogues, (μ-pdt)[Fe(CO)2CN][Fe(CO)3](-), (μ-pdt)[Fe(CO)3]2, and (μ-pdt)[Fe(CO)2NO][Fe(CO)3](+), provide an explanation for the role that the electron-rich iron moiety plays in inducing the rotation of the electron-poor iron moiety to produce a bridging CO ligand, a key factor in stabilizing the electron-rich iron moiety and for support of the rotated structure as found in the enzyme active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.