Winged helix transcription factors, including members of the forkhead and the RFX subclasses, are characteristic for the eukaryotic domains in animals and fungi but seem to be missing in plants. In this study, in vitro and in vivo approaches were used to determine the functional role of the RFX transcription factor CPCR1 from the filamentous fungus Acremonium chrysogenum in cephalosporin C biosynthesis. Gel retardation analyses were applied to identify new binding sites of the transcription factor in an intergenic promoter region of cephalosporin C biosynthesis genes. Here, we illustrate that CPCR1 recognizes and binds at least two sequences in the intergenic region between the pcbAB and pcbC genes. The in vivo relevance of the two sequences for gene activation was demonstrated by using pcbC promoter-lacZ fusions in A. chrysogenum. The deletion of both CPCR1 binding sites resulted in an extensive reduction of reporter gene activity in transgenic strains (to 12% of the activity level of the control). Furthermore, Acremonium transformants with multiple copies of the cpcR1 gene and knockout strains support the idea of CPCR1 being a regulator of cephalosporin C biosynthesis gene expression. Significant differences in pcbC gene transcript levels were obtained with the knockout transformants. More-than-twofold increases in the pcbC transcript level at 24 and 36 h of cultivation were followed by a reduction to approximately 80% from 48 to 96 h in the knockout strain. The overall levels of the production of cephalosporin C were identical in transformed and nontransformed strains; however, the knockout strains showed a striking reduction in the level of the biosynthesis of intermediate penicillin N to less than 20% of that of the recipient strain. We were able to show that the complementation of the cpcR1 gene in the knockout strains reverses pcbC transcript and penicillin N amounts to levels comparable to those in the control. These results clearly indicate the involvement of CPCR1 in the regulation of cephalosporin C biosynthesis. However, the complexity of the data points to a well-controlled or even functional redundant network of transcription factors, with CPCR1 being only one player within this process.
In filamentous fungi, RNA silencing is an attractive alternative to disruption experiments for the functional analysis of genes. We adapted the gene encoding the autofluorescent DsRed protein as a reporter to monitor the silencing process in fungal transformants. Using the cephalosporin C producer Acremonium chrysogenum, strains showing a high level of expression of the DsRed gene were constructed, resulting in red fungal colonies. Transfer of a hairpin-expressing vector carrying fragments of the DsRed gene allowed efficient silencing of DsRed expression. Monitoring of this process by Northern hybridization, real-time PCR quantification, and spectrofluorometric measurement of the DsRed protein confirmed that downregulation of gene expression can be observed at different expression levels. The usefulness of the DsRed silencing system was demonstrated by investigating cosilencing of DsRed together with pcbC, encoding the isopenicillin N synthase, an enzyme involved in cephalosporin C biosynthesis. Downregulation of pcbC can be detected easily by a bioassay measuring the antibiotic activity of individual strains. In addition, the presence of the isopenicillin N synthase was investigated by Western blot hybridization. All transformants having a colorless phenotype showed simultaneous downregulation of the pcbC gene, albeit at different levels. The RNA-silencing system presented here should be a powerful genetic tool for strain improvement and genome-wide analysis of this biotechnologically important filamentous fungus.
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing system that downregulates target gene expression. Here, we provide several lines of evidence for RNA silencing in the industrial β-lactam antibiotic producer Penicillium chrysogenum using the DsRed reporter gene under the control of the constitutive trpC promoter or the inducible xylP promoter. The functional RNAi system was verified by detection of siRNAs that hybridized exclusively with gene-specific 32P-labelled RNA probes. Moreover, when RNAi was used to silence the endogenous PcbrlA morphogene that controls conidiophore development, a dramatic reduction in the formation of conidiospores was observed in 47 % of the corresponding transformants. Evidence that RNAi in P. chrysogenum is dependent on a Dicer peptide was provided with a strain lacking Pcdcl2. In the ΔPcdcl2 background, silencing of the PcbrlA gene was tested. None of the transformants analysed showed a developmental defect. The applicability of the RNAi system in P. chrysogenum was finally demonstrated by silencing the Pcku70 gene to increase homologous recombination frequency. This led to the generation of single and double knockout mutants.
Here, we document a technique to reduce the size of the genome of Pseudomonas putida by using a combinatorial mini-Tn5-targeted Flp-FRT recombination system. This method combines random insertions with the site-specific Flp-FRT recombination system to generate successive random deletions in a single strain in which parts of the genome are excised via the action of the cognate flippase. For this purpose, we have generated two mini-Tn5 transposon mutant libraries with single and double integrations of either mini-Tn5 KpF alone or mini-Tn5 KpF in parallel with mini-Tn5 TF, respectively. These mini-Tn5 transposons carry different selectable markers and each has an FRT (Flippase Recognition Target) site. Mapping of the position of both mini-Tn5 transposons in the chromosome of P. putida was conducted by Arbitrary Primed-PCR (AP-PCR). Subsequent sequencing of the PCR fragments led to the identification of the coordinates of the transposons and the orientation of both FRT sites. Under specific laboratory conditions, both FRT sites were recognized by the flippase, and the deletion of a nonessential intervening genomic segment along with the transposon backbones occurred without inheritance of any marker genes.
The promoter of the cre1 gene, encoding the glucose-dependent regulator CRE1 from the beta-lactam producer Acremonium chrysogenum, carries 15 putative CRE1 binding sites (BS1 to BS15). For a detailed analysis, we fused cre1 promoter deletion derivatives with the DsRed reporter gene to perform a comparative gene expression analysis. Plate assays, Northern hybridizations, and spectrofluorometric measurements of DsRed identified the minimal D4 promoter sequence that promoted glucose-dependent expression. Truncated recombinant CRE1 interacted with D4 in electromobility shift analysis and these binding studies were further extended with two oligonucleotides, carrying putative CRE1 binding sites BS14 and BS15. Surface plasmon resonance analysis was performed using BS14 and BS15, along with four derivatives containing 2 or 4 bp substitutions within BS14 and BS15, respectively. Substitutions within BS14 abolished the high affinity interaction with CRE1, while mutations in BS15 only marginally diminished the affinity with CRE1. In vivo analysis of a modified D4 sequence with substitutions in the two binding sites confirmed the in vitro binding results and still promoted glucose-dependent gene expression. Our results will contribute to the construction of versatile expression vectors carrying a minimal cre1 promoter sequence that still confers glucose-dependent induction of gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.