Epithelial cells must adhere to the extracellular matrix (ECM) for survival, as detachment from matrix triggers apoptosis or anoikis. Integrins are major mediators of adhesion between cells and ECM proteins, and transduce signals required for cell survival. Recent evidence suggests that integrin receptors are coupled to growth factor receptors in the regulation of multiple biological functions; however, mechanisms involved in coordinate regulation of cell survival are poorly understood and mediators responsible for anoikis have not been well characterized. Here, we identify the pro-apoptotic protein Bim as a critical mediator of anoikis in epithelial cells. Bim is strongly induced after cell detachment and downregulation of Bim expression by RNA interference (RNAi) inhibits anoikis. Detachment-induced expression of Bim requires a lack of beta(1)-integrin engagement, downregulation of EGF receptor (EGFR) expression and inhibition of Erk signalling. Overexpressed EGFR was uncoupled from integrin regulation, resulting in the maintenance of Erk activation in suspension, and a block in Bim expression and anoikis. Thus, Bim functions as a key sensor of integrin and growth factor signals to the Erk pathway, and loss of such coordinate regulation may contribute to tumour progression.
Growth factor regulation of the cortical actin cytoskeleton is fundamental to a wide variety of cellular processes. The cortical actin-associated protein, cortactin, regulates the formation of dynamic actin networks via the actin-related protein (Arp)2/3 complex and hence is a key mediator of such responses. In order to reveal novel roles for this versatile protein, we used a proteomics-based approach to isolate cortactin-interacting proteins. This identified several proteins, including CD2-associated protein (CD2AP), as targets for the cortactin Src homology 3 domain. Co-immunoprecipitation of CD2AP with cortactin occurred at endogenous expression levels, was transiently induced by epidermal growth factor (EGF) treatment, and required the cortactin Src homology 3 domain. The CD2AP-binding site for cortactin mapped to the second of three proline-rich regions. Because CD2AP is closely related to Cbl-interacting protein of 85 kDa (CIN85), which regulates growth factor receptor down-regulation via complex formation with Cbl and endophilin, we investigated whether the CD2AP-cortactin complex performs a similar function. EGF treatment of cells led to transient association of Cbl and the epidermal growth factor receptor (EGFR) with a constitutive CD2AP-endophilin complex. Cortactin was recruited into this complex with slightly delayed kinetics compared with Cbl and the EGFR. Immunofluorescence analysis revealed that the EGFR, CD2AP, and cortactin co-localized in regions of EGF-induced membrane ruffles. Therefore, by binding both CD2AP and the Arp2/3 complex, cortactin links receptor endocytosis to actin polymerization, which may facilitate the trafficking of internalized growth factor receptors.Subcellular compartmentalization and trafficking of signal transduction complexes and a variety of dynamic cellular responses to extracellular stimuli require regulated interactions between specific components of signaling pathways and the cytoskeleton. These interactions may be direct or mediated by particular adaptor or scaffolding proteins. Among these, cortactin was identified as a v-Src substrate associated with the cortical actin cytoskeleton approximately a decade ago, although insights into its cellular function and the underlying mechanisms have only been obtained recently (1).In line with an adaptor role, cortactin is a multidomain protein, with the individual modules capable of mediating specific protein-protein interactions (1). The N-terminal region mediates binding to the Arp 1 2/3 complex, a highly conserved regulator of the assembly and structure of actin networks (2), and contains a DDW motif characteristic of Arp2/3-interacting proteins such as WASP, Myo3p, and ActA (2, 3). This is followed by six and a half copies of a 37-amino acid repeat, with the fourth repeat necessary for binding to F-actin in vitro (2). Downstream of the repeats is a predicted helical domain and a region rich in serine, threonine, and proline residues. The latter is a target for both tyrosine and serine/threonine phosphorylation (4 -6)....
Epithelial cells organize into cyst-like structures that contain a spherical monolayer of cells that enclose a central lumen. Using a three-dimensional basement membrane culture model in which mammary epithelial cells form hollow, acinus-like structures, we previously demonstrated that lumen formation is achieved, in part, through apoptosis of centrally localized cells. We demonstrate that the proapoptotic protein Bim may selectively trigger apoptosis of the centrally localized acinar cells, leading to temporally controlled lumen formation. Bim is not detectable during early stages of three-dimensional mammary acinar morphogenesis and is then highly upregulated in all cells of acini, coincident with detection of apoptosis in the centrally localized acinar cells. Inhibition of Bim expression by RNA interference transiently blocks luminal apoptosis and delays lumen formation. Oncogenes that induce acinar luminal filling, such as ErbB2 and v-Src, suppress expression of Bim through a pathway dependent on Erk-mitogen-activated protein kinase; however, HPV 16 E7, an oncogene that stimulates cell proliferation but not luminal filling, is unable to reduce Bim expression. Thus, Bim is a critical regulator of luminal apoptosis during mammary acinar morphogenesis in vitro and may be an important target of oncogenes that disrupt glandular epithelial architecture.Tissue homeostasis of multicellular organisms is established and maintained by the delicate interplay between cell growth and cell death signals that are often altered in disease states such as cancer. Apoptosis is fundamental in maintaining proper cell number, sculpting of structures, and other cellular process that are necessary for embryonic development and for the maintenance of tissue homeostasis in the adult organism (7). Apoptosis has been implicated in the process of cavitation, or lumen formation in a solid cell mass in several three-dimensional (3D) spheroid models (2,6,15,18). In addition, apoptosis accompanies clearing of the terminal end buds in the developing mammary gland and lumen formation in the salivary gland (19,20). Many types of early breast cancer lesions such as ductal carcinoma in situ are characterized by loss of acinar organization and filling of the luminal space (14). The molecular mechanisms responsible for creation of the luminal space in epithelial acini are not well defined. In addition, it is not known how oncogenes that induce filling of the luminal space can target these pathways.We have investigated processes associated with lumen formation in the MCF-10A line of immortalized human mammary epithelial cells. When cultured on a reconstituted basement membrane derived from Engelbreth-Holm-Swarm tumor (Matrigel), immortalized MCF-10A mammary epithelial cells undergo a series of morphogenetic processes resulting in the formation of acinus-like structures containing a single layer of polarized cells surrounded by a hollow lumen (28). Formation of the luminal space in this model follows the development of apico-basal polarity and involv...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.