It is commonly believed that only T lymphocytes and B lymphocytes expressing recombination-dependent antigen-specific receptors mediate contact hypersensitivity responses to haptens. Here we found that mice devoid of T cells and B cells demonstrated substantial contact hypersensitivity responses to 2,4-dinitrofluorobenzene and oxazolone. Those responses were adaptive in nature, as they persisted for at least 4 weeks and were elicited only by haptens to which mice were previously sensitized. No contact hypersensitivity was induced in mice lacking all lymphocytes, including natural killer cells. Contact hypersensitivity responses were acquired by such mice after adoptive transfer of natural killer cells from sensitized donors. Transferable hapten-specific memory resided in a Ly49C-I(+) natural killer subpopulation localized specifically in donor livers. These observations indicate that natural killer cells can mediate long-lived, antigen-specific adaptive recall responses independent of B cells and T cells.
The development of lymphoid organs can be viewed as a continuum. At one end are the 'canonical' secondary lymphoid organs, including lymph nodes and spleen; at the other end are 'ectopic' or tertiary lymphoid organs, which are cellular accumulations arising during chronic inflammation by the process of lymphoid neogenesis. Secondary lymphoid organs are genetically 'preprogrammed' and 'prepatterned' during ontogeny, whereas tertiary lymphoid organs arise under environmental influences and are not restricted to specific developmental 'windows' or anatomic locations. Between these two boundaries are other types of lymphoid tissues that are less developmentally but more environmentally regulated, such as Peyer's patches, nasal-associated lymphoid tissue, bronchial-associated lymphoid tissue and inducible bronchial-associated lymphoid tissue. Their regulation, functions and potential effects are discussed here.
Lymph node (LN) function depends on T and B cell compartmentalization, antigen presenting cells, and high endothelial venules (HEVs) expressing mucosal addressin cell adhesion molecule (MAdCAM-1) and peripheral node addressin (PNAd), ligands for naive cell entrance into LNs. Luminal PNAd expression requires a HEV-restricted sulfotransferase (HEC-6ST). To investigate LTαβ's activities in lymphoid organogenesis, mice simultaneously expressing LTα and LTβ under rat insulin promoter II (RIP) control were compared with RIPLTα mice in a model of lymphoid neogenesis and with LTβ−/− mice. RIPLTαβ pancreata exhibited massive intra-islet mononuclear infiltrates that differed from the more sparse peri-islet cell accumulations in RIPLTα pancreata: separation into T and B cell areas was more distinct with prominent FDC networks, expression of lymphoid chemokines (CCL21, CCL19, and CXCL13) was more intense, and L-selectin+ cells were more frequent. In contrast to the predominant abluminal PNAd pattern of HEV in LTβ−/− MLN and RIPLTα pancreatic infiltrates, PNAd was expressed at the luminal and abluminal aspects of HEV in wild-type LN and in RIPLTαβ pancreata, coincident with HEC-6ST. These data highlight distinct roles of LTα and LTαβ in lymphoid organogenesis supporting the notion that HEC-6ST–dependent luminal PNAd is under regulation by LTαβ.
The lymphotoxin (LT) β receptor plays a critical role in secondary lymphoid organogenesis and the classical and alternative NF-κB pathways have been implicated in this process. IKKα is a key molecule for the activation of the alternative NF-κB pathway. However, its precise role and target genes in secondary lymphoid organogenesis remain unknown, particularly with regard to high endothelial venules (HEV). In this study, we show that IKKαAA mutant mice, who lack inducible kinase activity, have hypocellular lymph nodes (LN) and nasal-associated lymphoid (NALT) tissue characterized by marked defects in microarchitecture and HEV. In addition, IKKαAA LNs showed reduced lymphoid chemokine CCL19, CCL21, and CXCL13 expression. IKKαAA LN- and NALT-HEV were abnormal in appearance with reduced expression of peripheral node addressin (PNAd) explained by a severe reduction in the HEV-associated proteins, glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1), and high endothelial cell sulfotransferase, a PNAd-generating enzyme that is a target of LTαβ. In this study, analysis of LTβ−/− mice identifies GlyCAM-1 as another LTβ-dependent gene. In contrast, TNFRI−/− mice, which lose classical NF-κB pathway activity but retain alternative NF-κB pathway activity, showed relatively normal GlyCAM-1 and HEC-6ST expression in LN-HEV. In addition, in this communication, it is demonstrated that LTβR is prominently expressed on LN- and NALT-HEV. Thus, these data reveal a critical role for IKKα in LN and NALT development, identify GlyCAM-1 and high endothelial cell sulfotransferase as new IKKα-dependent target genes, and suggest that LTβR signaling on HEV can regulate HEV-specific gene expression.
SUMMARYTo elucidate the mechanisms of anti-DNA production, we assessed the binding of sera of normal human subjects (NHS) and patients with SLE to a panel of bacterial and mammalian DNA. Using singlestranded DNA as antigens in an ELISA, NHS showed significant binding to some but not all bacterial DNA, while lacking reactivity to calf thymus DNA. Among bacterial DNA, the highest levels of binding were observed with DNA from Micrococcus lysodeikticus and Staphylococcus aureus. In contrast, SLE sera showed high levels of binding to all DNA tested. To evaluate further immunochemical properties of the anti-DNA antibodies, the subclass distribution of these responses was evaluated by subclass-specific reagents. While NHS showed a predominance of IgG2 antibodies to bacterial DNA, SLE sera had a predominance of IgG1 antibodies to these antigens. Together, these results provide further evidence for the antigenicity of bacterial DNA and suggest that NHS and SLE anti-DNA differ in the patterns of epitope recognition as well as mechanisms of induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.