Clathrin-coated vesicles mediate trafficking of proteins and nutrients in the cell and between organelles. Proteins included in the clathrin-coated vesicles (CCVs) category include clathrin heavy chain (CHC), clathrin light chain (CLC), and a variety of adaptor protein complexes. Much is known about the structures of the individual CCV components, but data are lacking about the structures of the fully assembled complexes together with membrane and in complex with cargo. Here, we determined the structures of natively assembled CCVs in a variety of geometries. We show that the adaptor β2 appendages crosslink adjacent CHC β-propellers and that the appendage densities are enriched in CCV hexagonal faces. We resolve how adaptor protein 2 and other associated factors in hexagonal faces form an assembly hub with an extensive web of interactions between neighboring β-propellers and propose a structural model that explains how adaptor binding can direct the formation of pentagonal and hexagonal faces.
Vesicle trafficking by clathrin coated vesicles (CCVs) is one of the major mechanisms by which proteins and nutrients are absorbed by the cell and transported between organelles. The individual proteins comprising the coated vesicles include clathrin heavy chain, clathrin light chain, and a variety of adaptor protein complexes. Much is known about the structures of the individual CCV components, but data are lacking about the structures of the fully assembled complexes together with membrane and in complex with cargo. Here we determined the structures of natively assembled CCVs in a variety of geometries. We show that the adaptor β2appendages crosslink adjacent CHC β-propellers and that the appendage densities reside almost exclusively in CCV hexagonal faces. We resolve how AP2 and other associated factors in hexagonal faces form an assembly hub with an extensive web of interactions between neighboring β-propellers and propose a structural model that explains how adaptor binding can direct the formation of pentagonal and hexagonal faces.
Temporal interference (TI) is a strategy for non-invasive steerable stimulation of neurons deep in the brain using multiple kHz-range electric fields with a difference frequency within the range of neural activity. Here we report the validation of the TI stimulation concept in humans. We used electric field modelling and measurements in a human cadaver to verify that the locus of the transcranial TI stimulation can be steerably focused in the hippocampus with minimal exposure to the overlying cortex. We then used functional magnetic resonance imaging (fMRI) to investigate physiological changes in hippocampal activity during stimulation. TI modulated hippocampal activity during the performance of an episodic memory task. In an additional study, prolonged exposure to TI stimulation improved episodic memory accuracy in a healthy human cohort. Our findings demonstrate the utility of TI stimulation by non-invasively modulating hippocampal neural activity in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.