Airway macrophages provide a first line of host defense against a range of airborne pathogens, including influenza virus. In this study, we show that influenza viruses differ markedly in their abilities to infect murine macrophages in vitro and that infection of macrophages is nonproductive and no infectious virus is released. Virus strain BJx109 (H3N2) infected macrophages with high efficiency and was associated with mild disease following intranasal infection of mice. In contrast, virus strain PR8 (H1N1) was poor in its ability to infect macrophages and highly virulent for mice. Depletion of airway macrophages by clodronate-loaded liposomes led to the development of severe viral pneumonia in BJx109-infected mice but did not modulate disease severity in PR8-infected mice. The severe disease observed in macrophage-depleted mice infected with BJx109 was associated with exacerbated virus replication in the airways, leading to severe airway inflammation, pulmonary edema, and vascular leakage, indicative of lung injury. Thymic atrophy, lymphopenia, and dysregulated cytokine and chemokine production were additional systemic manifestations associated with severe disease. Thus, airway macrophages play a critical role in limiting lung injury and associated disease caused by BJx109. Furthermore, the inability of PR8 to infect airway macrophages may be a critical factor contributing to its virulence for mice.
Although sialic acid has long been recognized as the primary receptor determinant for attachment of influenza virus to host cells, the specific receptor molecules that mediate viral entry are not known for any cell type. For the infection of murine macrophages by influenza virus, our earlier study indicated involvement of a C-type lectin, the macrophage mannose receptor (MMR), in this process. Here, we have used direct binding techniques to confirm and characterize the interaction of influenza virus with the MMR and to seek additional macrophage surface molecules that may have potential as receptors for viral entry. We identified the macrophage galactose-type lectin (MGL) as a second macrophage membrane C-type lectin that binds influenza virus and is known to be endocytic. Binding of influenza virus to MMR and MGL occurred independently of sialic acid through Ca 2؉ -dependent recognition of viral glycans by the carbohydrate recognition domains of the two lectins; influenza virus also bound to the sialic acid on the MMR. Multivalent ligands of the MMR and MGL inhibited influenza virus infection of macrophages in a manner that correlated with expression of these receptors on different macrophage populations. Influenza virus strain A/PR/8/34, which is poorly glycosylated and infects macrophages poorly, was not recognized by the C-type lectin activity of either the MMR or the MGL. We conclude that lectin-mediated interactions of influenza virus with the MMR or the MGL are required for the endocytic uptake of the virus into macrophages, and these lectins can thus be considered secondary or coreceptors with sialic acid for infection of this cell type.
Glycosylation clearly plays an important role in the life cycle of influenza viruses and certain glycosylation sites are required for the structural integrity and stability of the HA and NA glycoproteins during biosynthesis and formation of intact virions. Furthermore, glycosylation has been shown to modulate the functions of influenza glycoproteins, in particular the recognition of host cell receptors and in shielding antigenic epitopes on the viral HA. The addition of oligosaccharide moieties to the globular head of the HA does, however, correlate with an increased sensitivity to the antiviral activities of SP-D and to recognition and destruction of virus via the MMR on murine macrophages. Consequently, the degree of glycosylation appears to be an important factor in determining sensitivity to lectin-mediated defences, and therefore in determining the ability of a particular virus strain to replicate in the respiratory tract of mice following intranasal infection. The mouse-adapted PR8 strain which lacks mannose-containing glycans from the head of its HA molecule was largely resistant to the antiviral activities of SP-D and the MMR in vitro and induced severed clinical disease following intranasal infection of mice. The finding that mannan treatment of BJx109-infected mice facilitated an early and dramatic enhancement of disease severity is also consistent with a major role for mannose-specific lectins in limiting influenza virus growth and spread in the respiratory tract.
Neutrophils are prominent in epidermal and dermal layers of human herpetic lesions and are rapidly recruited into the skin follow epidermal abrasion and infection of mice with herpes simplex virus type-1 (HSV-1). Herein, we demonstrate that early production of neutrophil-attracting chemokines KC/MIP-2 is associated with transient recruitment of neutrophils into the skin of HSV-1-infected mice in temporal association with the development of herpetic lesions. Treatment of HSV-1-infected mice with a Ly6G-specific mAb induced systemic neutropenia, but surprisingly did not alter virus replication or lesion development. In contrast, depletion of Gr-1(+) cells with mAb RB6-8C5 led to enhanced virus growth and lesion severity. Thus, while neutrophils are prominent in zosteriform lesions of HSV-1-infected mice, they do not appear to play a major role in controlling virus replication or lesion development and/or healing. In contrast, Gr-1(+) cells limit both virus replication and lesion development in the zosteriform model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.